Towards Learning Abductive Reasoning using VSA Distributed Representations
- URL: http://arxiv.org/abs/2406.19121v3
- Date: Fri, 30 Aug 2024 06:17:46 GMT
- Title: Towards Learning Abductive Reasoning using VSA Distributed Representations
- Authors: Giacomo Camposampiero, Michael Hersche, Aleksandar Terzić, Roger Wattenhofer, Abu Sebastian, Abbas Rahimi,
- Abstract summary: We introduce the Abductive Rule Learner with Context-awareness (ARLC) model.
ARLC features a novel and more broadly applicable training objective for abductive reasoning.
We show ARLC's robustness to post-programming training by incrementally learning from examples on top of programmed knowledge.
- Score: 56.31867341825068
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce the Abductive Rule Learner with Context-awareness (ARLC), a model that solves abstract reasoning tasks based on Learn-VRF. ARLC features a novel and more broadly applicable training objective for abductive reasoning, resulting in better interpretability and higher accuracy when solving Raven's progressive matrices (RPM). ARLC allows both programming domain knowledge and learning the rules underlying a data distribution. We evaluate ARLC on the I-RAVEN dataset, showcasing state-of-the-art accuracy across both in-distribution and out-of-distribution (unseen attribute-rule pairs) tests. ARLC surpasses neuro-symbolic and connectionist baselines, including large language models, despite having orders of magnitude fewer parameters. We show ARLC's robustness to post-programming training by incrementally learning from examples on top of programmed knowledge, which only improves its performance and does not result in catastrophic forgetting of the programmed solution. We validate ARLC's seamless transfer learning from a 2x2 RPM constellation to unseen constellations. Our code is available at https://github.com/IBM/abductive-rule-learner-with-context-awareness.
Related papers
- Can Large Language Models Understand Intermediate Representations? [17.033963652676164]
This paper investigates the capabilities of Large Language Models (LLMs) in understanding Intermediate Representations (IRs)
We analyze their performance across four tasks: Control Flow Graph (CFG) reconstruction, decompilation, code summarization, and execution reasoning.
The study recommends fine-tuning on structured IR datasets and integration of explicit control flow models to augment their comprehension and handling of IR-related tasks.
arXiv Detail & Related papers (2025-02-07T17:23:48Z) - Online inductive learning from answer sets for efficient reinforcement learning exploration [52.03682298194168]
We exploit inductive learning of answer set programs to learn a set of logical rules representing an explainable approximation of the agent policy.
We then perform answer set reasoning on the learned rules to guide the exploration of the learning agent at the next batch.
Our methodology produces a significant boost in the discounted return achieved by the agent, even in the first batches of training.
arXiv Detail & Related papers (2025-01-13T16:13:22Z) - Compositional Image Retrieval via Instruction-Aware Contrastive Learning [40.54022628032561]
Composed Image Retrieval (CIR) involves retrieving a target image based on a composed query of an image paired with text that specifies modifications or changes to the visual reference.
In practice, due to the scarcity of annotated data in downstream tasks, Zero-Shot CIR (ZS-CIR) is desirable.
We propose a novel embedding method utilizing an instruction-tuned Multimodal LLM (MLLM) to generate composed representation.
arXiv Detail & Related papers (2024-12-07T22:46:52Z) - Towards Learning to Reason: Comparing LLMs with Neuro-Symbolic on Arithmetic Relations in Abstract Reasoning [20.72570252804897]
This work compares large language models (LLMs) and neuro-symbolic approaches in solving Raven's progressive matrices (RPM)
Our analysis reveals that the root cause lies in the LLM's weakness in understanding and executing arithmetic rules.
We find that ARLC achieves almost perfect accuracy on the center constellation of I-RAVEN, demonstrating a high fidelity in arithmetic rules.
arXiv Detail & Related papers (2024-12-07T08:45:39Z) - Improving LLM Reasoning through Scaling Inference Computation with Collaborative Verification [52.095460362197336]
Large language models (LLMs) struggle with consistent and accurate reasoning.
LLMs are trained primarily on correct solutions, reducing their ability to detect and learn from errors.
We propose a novel collaborative method integrating Chain-of-Thought (CoT) and Program-of-Thought (PoT) solutions for verification.
arXiv Detail & Related papers (2024-10-05T05:21:48Z) - Probabilistic Abduction for Visual Abstract Reasoning via Learning Rules
in Vector-symbolic Architectures [22.12114509953737]
Abstract reasoning is a cornerstone of human intelligence, and replicating it with artificial intelligence (AI) presents an ongoing challenge.
This study focuses on efficiently solving Raven's progressive matrices (RPM), a visual test for assessing abstract reasoning abilities.
Instead of hard-coding the rule formulations associated with RPMs, our approach can learn the VSA rule formulations with just one pass through the training data.
arXiv Detail & Related papers (2024-01-29T10:17:18Z) - The Wisdom of Hindsight Makes Language Models Better Instruction
Followers [84.9120606803906]
Reinforcement learning has seen wide success in finetuning large language models to better align with instructions via human feedback.
In this paper, we consider an alternative approach: converting feedback to instruction by relabeling the original one and training the model for better alignment in a supervised manner.
We propose Hindsight Instruction Relabeling (HIR), a novel algorithm for aligning language models with instructions.
arXiv Detail & Related papers (2023-02-10T12:16:38Z) - Neural Model Reprogramming with Similarity Based Mapping for
Low-Resource Spoken Command Recognition [71.96870151495536]
We propose a novel adversarial reprogramming (AR) approach for low-resource spoken command recognition (SCR)
The AR procedure aims to modify the acoustic signals (from the target domain) to repurpose a pretrained SCR model.
We evaluate the proposed AR-SCR system on three low-resource SCR datasets, including Arabic, Lithuanian, and dysarthric Mandarin speech.
arXiv Detail & Related papers (2021-10-08T05:07:35Z) - Learning Centric Wireless Resource Allocation for Edge Computing:
Algorithm and Experiment [15.577056429740951]
Edge intelligence is an emerging network architecture that integrates sensing, communication, computing components, and supports various machine learning applications.
Existing methods ignore two important facts: 1) different models have heterogeneous demands on training data; 2) there is a mismatch between the simulated environment and the real-world environment.
This paper proposes the learning centric wireless resource allocation scheme that maximizes the worst learning performance of multiple tasks.
arXiv Detail & Related papers (2020-10-29T06:20:40Z) - Towards Accurate Knowledge Transfer via Target-awareness Representation
Disentanglement [56.40587594647692]
We propose a novel transfer learning algorithm, introducing the idea of Target-awareness REpresentation Disentanglement (TRED)
TRED disentangles the relevant knowledge with respect to the target task from the original source model and used as a regularizer during fine-tuning the target model.
Experiments on various real world datasets show that our method stably improves the standard fine-tuning by more than 2% in average.
arXiv Detail & Related papers (2020-10-16T17:45:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.