Towards Learning Abductive Reasoning using VSA Distributed Representations
- URL: http://arxiv.org/abs/2406.19121v3
- Date: Fri, 30 Aug 2024 06:17:46 GMT
- Title: Towards Learning Abductive Reasoning using VSA Distributed Representations
- Authors: Giacomo Camposampiero, Michael Hersche, Aleksandar Terzić, Roger Wattenhofer, Abu Sebastian, Abbas Rahimi,
- Abstract summary: We introduce the Abductive Rule Learner with Context-awareness (ARLC) model.
ARLC features a novel and more broadly applicable training objective for abductive reasoning.
We show ARLC's robustness to post-programming training by incrementally learning from examples on top of programmed knowledge.
- Score: 56.31867341825068
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce the Abductive Rule Learner with Context-awareness (ARLC), a model that solves abstract reasoning tasks based on Learn-VRF. ARLC features a novel and more broadly applicable training objective for abductive reasoning, resulting in better interpretability and higher accuracy when solving Raven's progressive matrices (RPM). ARLC allows both programming domain knowledge and learning the rules underlying a data distribution. We evaluate ARLC on the I-RAVEN dataset, showcasing state-of-the-art accuracy across both in-distribution and out-of-distribution (unseen attribute-rule pairs) tests. ARLC surpasses neuro-symbolic and connectionist baselines, including large language models, despite having orders of magnitude fewer parameters. We show ARLC's robustness to post-programming training by incrementally learning from examples on top of programmed knowledge, which only improves its performance and does not result in catastrophic forgetting of the programmed solution. We validate ARLC's seamless transfer learning from a 2x2 RPM constellation to unseen constellations. Our code is available at https://github.com/IBM/abductive-rule-learner-with-context-awareness.
Related papers
- Improving LLM Reasoning through Scaling Inference Computation with Collaborative Verification [52.095460362197336]
Large language models (LLMs) struggle with consistent and accurate reasoning.
LLMs are trained primarily on correct solutions, reducing their ability to detect and learn from errors.
We propose a novel collaborative method integrating Chain-of-Thought (CoT) and Program-of-Thought (PoT) solutions for verification.
arXiv Detail & Related papers (2024-10-05T05:21:48Z) - LLMs-as-Instructors: Learning from Errors Toward Automating Model Improvement [93.38736019287224]
"LLMs-as-Instructors" framework autonomously enhances the training of smaller target models.
Inspired by the theory of "Learning from Errors", this framework employs an instructor LLM to meticulously analyze the specific errors within a target model.
Within this framework, we implement two strategies: "Learning from Error," which focuses solely on incorrect responses to tailor training data, and "Learning from Error by Contrast", which uses contrastive learning to analyze both correct and incorrect responses for a deeper understanding of errors.
arXiv Detail & Related papers (2024-06-29T17:16:04Z) - Probabilistic Abduction for Visual Abstract Reasoning via Learning Rules
in Vector-symbolic Architectures [22.12114509953737]
Abstract reasoning is a cornerstone of human intelligence, and replicating it with artificial intelligence (AI) presents an ongoing challenge.
This study focuses on efficiently solving Raven's progressive matrices (RPM), a visual test for assessing abstract reasoning abilities.
Instead of hard-coding the rule formulations associated with RPMs, our approach can learn the VSA rule formulations with just one pass through the training data.
arXiv Detail & Related papers (2024-01-29T10:17:18Z) - A Reminder of its Brittleness: Language Reward Shaping May Hinder
Learning for Instruction Following Agents [38.928166383780535]
We argue that the apparent success of LRS is brittle, and prior positive findings can be attributed to weak RL baselines.
We provided theoretical and empirical evidence that agents trained using LRS rewards converge more slowly compared to pure RL agents.
arXiv Detail & Related papers (2023-05-26T04:28:03Z) - The Wisdom of Hindsight Makes Language Models Better Instruction
Followers [84.9120606803906]
Reinforcement learning has seen wide success in finetuning large language models to better align with instructions via human feedback.
In this paper, we consider an alternative approach: converting feedback to instruction by relabeling the original one and training the model for better alignment in a supervised manner.
We propose Hindsight Instruction Relabeling (HIR), a novel algorithm for aligning language models with instructions.
arXiv Detail & Related papers (2023-02-10T12:16:38Z) - Scene Text Recognition with Permuted Autoregressive Sequence Models [15.118059441365343]
Context-aware STR methods typically use internal autoregressive (AR) language models (LM)
Our method, PARSeq, learns an ensemble of internal AR LMs with shared weights using Permutation Language Modeling.
It achieves context-free non-AR and context-aware AR inference, and iterative refinement using bidirectional context.
arXiv Detail & Related papers (2022-07-14T14:51:50Z) - Neural Model Reprogramming with Similarity Based Mapping for
Low-Resource Spoken Command Recognition [71.96870151495536]
We propose a novel adversarial reprogramming (AR) approach for low-resource spoken command recognition (SCR)
The AR procedure aims to modify the acoustic signals (from the target domain) to repurpose a pretrained SCR model.
We evaluate the proposed AR-SCR system on three low-resource SCR datasets, including Arabic, Lithuanian, and dysarthric Mandarin speech.
arXiv Detail & Related papers (2021-10-08T05:07:35Z) - Learning Centric Wireless Resource Allocation for Edge Computing:
Algorithm and Experiment [15.577056429740951]
Edge intelligence is an emerging network architecture that integrates sensing, communication, computing components, and supports various machine learning applications.
Existing methods ignore two important facts: 1) different models have heterogeneous demands on training data; 2) there is a mismatch between the simulated environment and the real-world environment.
This paper proposes the learning centric wireless resource allocation scheme that maximizes the worst learning performance of multiple tasks.
arXiv Detail & Related papers (2020-10-29T06:20:40Z) - Towards Accurate Knowledge Transfer via Target-awareness Representation
Disentanglement [56.40587594647692]
We propose a novel transfer learning algorithm, introducing the idea of Target-awareness REpresentation Disentanglement (TRED)
TRED disentangles the relevant knowledge with respect to the target task from the original source model and used as a regularizer during fine-tuning the target model.
Experiments on various real world datasets show that our method stably improves the standard fine-tuning by more than 2% in average.
arXiv Detail & Related papers (2020-10-16T17:45:08Z) - Incorporating Relational Background Knowledge into Reinforcement
Learning via Differentiable Inductive Logic Programming [8.122270502556374]
We propose a novel deepReinforcement Learning (RRL) based on a differentiable Inductive Logic Programming (ILP)
We show the efficacy of this novel RRL framework using environments such as BoxWorld, GridWorld as well as relational reasoning for the Sort-of-CLEVR dataset.
arXiv Detail & Related papers (2020-03-23T16:56:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.