論文の概要: Evidential Concept Embedding Models: Towards Reliable Concept Explanations for Skin Disease Diagnosis
- arxiv url: http://arxiv.org/abs/2406.19130v1
- Date: Thu, 27 Jun 2024 12:29:50 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-28 14:17:52.507208
- Title: Evidential Concept Embedding Models: Towards Reliable Concept Explanations for Skin Disease Diagnosis
- Title(参考訳): エビデンシャルな概念埋め込みモデル:皮膚疾患診断のための信頼性の高い概念記述を目指して
- Authors: Yibo Gao, Zheyao Gao, Xin Gao, Yuanye Liu, Bomin Wang, Xiahai Zhuang,
- Abstract要約: CBM(Concept Bottleneck Models)は、人間の解釈可能な概念を意思決定に取り入れた、アクティブな解釈可能なフレームワークとして登場した。
本研究では,概念の不確かさをモデル化するために明らかな学習を利用する概念埋め込みモデル(evi-CEM)を提案する。
本評価は,evi-CEMが概念予測において優れた性能を発揮することを示す。
- 参考スコア(独自算出の注目度): 24.946148305384202
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Due to the high stakes in medical decision-making, there is a compelling demand for interpretable deep learning methods in medical image analysis. Concept Bottleneck Models (CBM) have emerged as an active interpretable framework incorporating human-interpretable concepts into decision-making. However, their concept predictions may lack reliability when applied to clinical diagnosis, impeding concept explanations' quality. To address this, we propose an evidential Concept Embedding Model (evi-CEM), which employs evidential learning to model the concept uncertainty. Additionally, we offer to leverage the concept uncertainty to rectify concept misalignments that arise when training CBMs using vision-language models without complete concept supervision. With the proposed methods, we can enhance concept explanations' reliability for both supervised and label-efficient settings. Furthermore, we introduce concept uncertainty for effective test-time intervention. Our evaluation demonstrates that evi-CEM achieves superior performance in terms of concept prediction, and the proposed concept rectification effectively mitigates concept misalignments for label-efficient training. Our code is available at https://github.com/obiyoag/evi-CEM.
- Abstract(参考訳): 医用画像解析における深層学習手法の解釈には,医学的意思決定に対する高い関心が強い。
CBM(Concept Bottleneck Models)は、人間の解釈可能な概念を意思決定に取り入れた、アクティブな解釈可能なフレームワークとして登場した。
しかし、その概念予測は、臨床診断に適用しても信頼性が欠如しており、概念説明の質を損なう可能性がある。
そこで本研究では,概念の不確実性をモデル化するために,明示的学習を用いた概念埋め込みモデル(evi-CEM)を提案する。
さらに、概念の不確実性を利用して、完全な概念監督を伴わない視覚言語モデルを用いてCBMを訓練する際に生じる概念の不整合を是正する。
提案手法により,教師付きおよびラベル効率の両面において,概念記述の信頼性を高めることができる。
さらに,効率的なテスト時間介入のための概念の不確実性についても紹介する。
評価の結果,evi-CEMは概念予測において優れた性能を示し,提案手法はラベル効率のよい学習において,概念の誤りを効果的に軽減する。
私たちのコードはhttps://github.com/obiyoag/evi-CEMで公開されています。
関連論文リスト
- A Two-Step Concept-Based Approach for Enhanced Interpretability and Trust in Skin Lesion Diagnosis [6.6635650150737815]
概念ボトルネックモデル (Concept Bottleneck Models, CBM) は、人間の理解できない概念のセットに対する最終疾患予測を制約することにより、固有の解釈可能性を提供する。
これらの課題に対処する新しい2段階の方法論を導入する。
CBMの2段階をシミュレートすることにより,臨床概念の自動予測にVLM(Pretrained Vision Language Model),疾患診断にLLM(Large Language Model)を用いる。
論文 参考訳(メタデータ) (2024-11-08T14:52:42Z) - How to Continually Adapt Text-to-Image Diffusion Models for Flexible Customization? [91.49559116493414]
本稿では,CIDM(Concept-Incremental Text-to-image Diffusion Model)を提案する。
破滅的な忘れと概念の無視を解決し、新しいカスタマイズタスクを概念的な方法で学習する。
実験により、CIDMが既存のカスタム拡散モデルを上回ることが確認された。
論文 参考訳(メタデータ) (2024-10-23T06:47:29Z) - Concept Complement Bottleneck Model for Interpretable Medical Image Diagnosis [8.252227380729188]
本稿では,医用画像診断のための補完的ボトルネックモデルを提案する。
そこで本研究では,概念の相違点を抽出し,それぞれの注意チャンネルで概念をスコアリングするために,概念アダプタを利用することを提案する。
本モデルでは,概念検出と疾患診断の課題において,最先端の競争相手よりも優れていた。
論文 参考訳(メタデータ) (2024-10-20T16:52:09Z) - Discover-then-Name: Task-Agnostic Concept Bottlenecks via Automated Concept Discovery [52.498055901649025]
ディープニューラルネットワークの「ブラックボックス」問題に対処するために、概念ボトルネックモデル(CBM)が提案されている。
本稿では,典型的なパラダイムを逆転させる新しいCBMアプローチであるDiscover-then-Name-CBM(DN-CBM)を提案する。
我々の概念抽出戦略は、下流のタスクに非依存であり、既にそのモデルに知られている概念を使用するため、効率的である。
論文 参考訳(メタデータ) (2024-07-19T17:50:11Z) - Improving Intervention Efficacy via Concept Realignment in Concept Bottleneck Models [57.86303579812877]
概念ボトルネックモデル (Concept Bottleneck Models, CBM) は、人間の理解可能な概念に基づいて、解釈可能なモデル決定を可能にする画像分類である。
既存のアプローチは、強いパフォーマンスを達成するために、画像ごとに多数の人間の介入を必要とすることが多い。
本稿では,概念関係を利用した学習型概念認識介入モジュールについて紹介する。
論文 参考訳(メタデータ) (2024-05-02T17:59:01Z) - Incremental Residual Concept Bottleneck Models [29.388549499546556]
Concept Bottleneck Models (CBM) は、ディープニューラルネットワークによって抽出されたブラックボックスの視覚表現を、解釈可能な概念のセットにマッピングする。
本稿では,概念完全性の課題を解決するために,インクリメンタル・Residual Concept Bottleneck Model (Res-CBM)を提案する。
提案手法は,任意のCBMの性能向上を目的としたポストホック処理法として,ユーザ定義の概念バンクに適用できる。
論文 参考訳(メタデータ) (2024-04-13T12:02:19Z) - On the Concept Trustworthiness in Concept Bottleneck Models [39.928868605678744]
概念ボトルネックモデル (Concept Bottleneck Models, CBM) は、推論プロセスを、概念マッピングと概念ラベル予測に分解する。
概念からラベルへの予測の透明性にもかかわらず、入力から中間概念へのマッピングはブラックボックスのままである。
概念が関連する領域から導出されているかどうかを評価するために、概念信頼性スコアと呼ばれる先駆的な指標が提案されている。
拡張されたCBMを導入し、特徴マップの異なる部分から概念予測を具体的に行えるようにした。
論文 参考訳(メタデータ) (2024-03-21T12:24:53Z) - Separable Multi-Concept Erasure from Diffusion Models [52.51972530398691]
大規模拡散モデルから安全でない概念を排除するために,分離可能なマルチコンセプト消去器(SepME)を提案する。
後者は最適化可能なモデルウェイトを分離し、各ウェイトインクリメントは特定の概念の消去に対応する。
広範囲にわたる実験は, 概念の排除, モデル性能の保存, 各種概念の消去・回復における柔軟性の確保に, アプローチの有効性を示すものである。
論文 参考訳(メタデータ) (2024-02-03T11:10:57Z) - ConcEPT: Concept-Enhanced Pre-Training for Language Models [57.778895980999124]
ConcEPTは、概念知識を事前訓練された言語モデルに注入することを目的としている。
これは、事前訓練されたコンテキストで言及されたエンティティの概念を予測するために、外部エンティティの概念予測を利用する。
実験の結果,ConcEPTは概念強化事前学習により概念知識を向上することがわかった。
論文 参考訳(メタデータ) (2024-01-11T05:05:01Z) - Coherent Concept-based Explanations in Medical Image and Its Application
to Skin Lesion Diagnosis [0.0]
既存のメラノーマ皮膚病変診断のための深層学習アプローチはブラックボックスモデルとみなす。
本稿では,概念ベースモデルの解釈可能性を改善するために,本質的に解釈可能なフレームワークを提案する。
本手法は皮膚病変分類のための既存のブラックボックスとコンセプトベースモデルより優れている。
論文 参考訳(メタデータ) (2023-04-10T13:32:04Z) - Concept Gradient: Concept-based Interpretation Without Linear Assumption [77.96338722483226]
概念活性化ベクトル(Concept Activation Vector, CAV)は、与えられたモデルと概念の潜在表現の間の線形関係を学習することに依存する。
我々は、線形概念関数を超えて概念に基づく解釈を拡張する概念グラディエント(CG)を提案した。
我々は、CGがおもちゃの例と実世界のデータセットの両方でCAVより優れていることを実証した。
論文 参考訳(メタデータ) (2022-08-31T17:06:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。