Think Step by Step: Chain-of-Gesture Prompting for Error Detection in Robotic Surgical Videos
- URL: http://arxiv.org/abs/2406.19217v1
- Date: Thu, 27 Jun 2024 14:43:50 GMT
- Title: Think Step by Step: Chain-of-Gesture Prompting for Error Detection in Robotic Surgical Videos
- Authors: Zhimin Shao, Jialang Xu, Danail Stoyanov, Evangelos B. Mazomenos, Yueming Jin,
- Abstract summary: This letter presents a novel and real-time end-to-end error detection framework, Chain-of-Thought (COG) prompting.
This encompasses two reasoning modules designed to mimic the decision-making processes of expert surgeons.
Our method encapsulates the reasoning processes inherent to surgical activities enabling it to outperform the state-of-the-art by 4.6% in F1 score, 4.6% in Accuracy, and 5.9% in Jaccard index while processing each frame in 6.69 milliseconds on average.
- Score: 18.106255939686545
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite significant advancements in robotic systems and surgical data science, ensuring safe and optimal execution in robot-assisted minimally invasive surgery (RMIS) remains a complex challenge. Current surgical error detection methods involve two parts: identifying surgical gestures and then detecting errors within each gesture clip. These methods seldom consider the rich contextual and semantic information inherent in surgical videos, limiting their performance due to reliance on accurate gesture identification. Motivated by the chain-of-thought prompting in natural language processing, this letter presents a novel and real-time end-to-end error detection framework, Chain-of-Thought (COG) prompting, leveraging contextual information from surgical videos. This encompasses two reasoning modules designed to mimic the decision-making processes of expert surgeons. Concretely, we first design a Gestural-Visual Reasoning module, which utilizes transformer and attention architectures for gesture prompting, while the second, a Multi-Scale Temporal Reasoning module, employs a multi-stage temporal convolutional network with both slow and fast paths for temporal information extraction. We extensively validate our method on the public benchmark RMIS dataset JIGSAWS. Our method encapsulates the reasoning processes inherent to surgical activities enabling it to outperform the state-of-the-art by 4.6% in F1 score, 4.6% in Accuracy, and 5.9% in Jaccard index while processing each frame in 6.69 milliseconds on average, demonstrating the great potential of our approach in enhancing the safety and efficacy of RMIS procedures and surgical education. The code will be available.
Related papers
- Surgeons vs. Computer Vision: A comparative analysis on surgical phase recognition capabilities [65.66373425605278]
Automated Surgical Phase Recognition (SPR) uses Artificial Intelligence (AI) to segment the surgical workflow into its key events.
Previous research has focused on short and linear surgical procedures and has not explored if temporal context influences experts' ability to better classify surgical phases.
This research addresses these gaps, focusing on Robot-Assisted Partial Nephrectomy (RAPN) as a highly non-linear procedure.
arXiv Detail & Related papers (2025-04-26T15:37:22Z) - Procedure-Aware Surgical Video-language Pretraining with Hierarchical Knowledge Augmentation [51.222684687924215]
Surgical video-language pretraining faces unique challenges due to the knowledge domain gap and the scarcity of multi-modal data.
We propose a hierarchical knowledge augmentation approach and a novel Procedure-Encoded Surgical Knowledge-Augmented Video-Language Pretraining framework to tackle these issues.
arXiv Detail & Related papers (2024-09-30T22:21:05Z) - SEDMamba: Enhancing Selective State Space Modelling with Bottleneck Mechanism and Fine-to-Coarse Temporal Fusion for Efficient Error Detection in Robot-Assisted Surgery [7.863539113283565]
We propose a novel hierarchical model named SEDMamba, which incorporates the selective state space model (SSM) into surgical error detection.
SEDMamba enhances selective SSM with a bottleneck mechanism and fine-to-coarse temporal fusion (FCTF) to detect and temporally localize surgical errors in long videos.
Our work also contributes the first-of-its-kind, frame-level, in-vivo surgical error dataset to support error detection in real surgical cases.
arXiv Detail & Related papers (2024-06-22T19:20:35Z) - SAR-RARP50: Segmentation of surgical instrumentation and Action
Recognition on Robot-Assisted Radical Prostatectomy Challenge [72.97934765570069]
We release the first multimodal, publicly available, in-vivo, dataset for surgical action recognition and semantic instrumentation segmentation, containing 50 suturing video segments of Robotic Assisted Radical Prostatectomy (RARP)
The aim of the challenge is to enable researchers to leverage the scale of the provided dataset and develop robust and highly accurate single-task action recognition and tool segmentation approaches in the surgical domain.
A total of 12 teams participated in the challenge, contributing 7 action recognition methods, 9 instrument segmentation techniques, and 4 multitask approaches that integrated both action recognition and instrument segmentation.
arXiv Detail & Related papers (2023-12-31T13:32:18Z) - GLSFormer : Gated - Long, Short Sequence Transformer for Step
Recognition in Surgical Videos [57.93194315839009]
We propose a vision transformer-based approach to learn temporal features directly from sequence-level patches.
We extensively evaluate our approach on two cataract surgery video datasets, Cataract-101 and D99, and demonstrate superior performance compared to various state-of-the-art methods.
arXiv Detail & Related papers (2023-07-20T17:57:04Z) - LoViT: Long Video Transformer for Surgical Phase Recognition [59.06812739441785]
We present a two-stage method, called Long Video Transformer (LoViT) for fusing short- and long-term temporal information.
Our approach outperforms state-of-the-art methods on the Cholec80 and AutoLaparo datasets consistently.
arXiv Detail & Related papers (2023-05-15T20:06:14Z) - CholecTriplet2021: A benchmark challenge for surgical action triplet
recognition [66.51610049869393]
This paper presents CholecTriplet 2021: an endoscopic vision challenge organized at MICCAI 2021 for the recognition of surgical action triplets in laparoscopic videos.
We present the challenge setup and assessment of the state-of-the-art deep learning methods proposed by the participants during the challenge.
A total of 4 baseline methods and 19 new deep learning algorithms are presented to recognize surgical action triplets directly from surgical videos, achieving mean average precision (mAP) ranging from 4.2% to 38.1%.
arXiv Detail & Related papers (2022-04-10T18:51:55Z) - Relational Graph Learning on Visual and Kinematics Embeddings for
Accurate Gesture Recognition in Robotic Surgery [84.73764603474413]
We propose a novel online approach of multi-modal graph network (i.e., MRG-Net) to dynamically integrate visual and kinematics information.
The effectiveness of our method is demonstrated with state-of-the-art results on the public JIGSAWS dataset.
arXiv Detail & Related papers (2020-11-03T11:00:10Z) - Symmetric Dilated Convolution for Surgical Gesture Recognition [10.699258974625073]
We propose a novel temporal convolutional architecture to automatically detect and segment surgical gestures.
We devise our method with a symmetric dilation structure bridged by a self-attention module to encode and decode the long-term temporal patterns.
We validate our approach on a fundamental robotic suturing task from the JIGSAWS dataset.
arXiv Detail & Related papers (2020-07-13T13:34:48Z) - TeCNO: Surgical Phase Recognition with Multi-Stage Temporal
Convolutional Networks [43.95869213955351]
We propose a Multi-Stage Temporal Convolutional Network (MS-TCN) that performs hierarchical prediction refinement for surgical phase recognition.
Our method is thoroughly evaluated on two datasets of laparoscopic cholecystectomy videos with and without the use of additional surgical tool information.
arXiv Detail & Related papers (2020-03-24T10:12:30Z) - Multi-Task Recurrent Neural Network for Surgical Gesture Recognition and
Progress Prediction [17.63619129438996]
We propose a multi-task recurrent neural network for simultaneous recognition of surgical gestures and estimation of a novel formulation of surgical task progress.
We demonstrate that recognition performance improves in multi-task frameworks with progress estimation without any additional manual labelling and training.
arXiv Detail & Related papers (2020-03-10T14:28:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.