論文の概要: Hack Me If You Can: Aggregating AutoEncoders for Countering Persistent Access Threats Within Highly Imbalanced Data
- arxiv url: http://arxiv.org/abs/2406.19220v1
- Date: Thu, 27 Jun 2024 14:45:38 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-28 13:58:17.798038
- Title: Hack Me If You Can: Aggregating AutoEncoders for Countering Persistent Access Threats Within Highly Imbalanced Data
- Title(参考訳): 自動エンコーダをアグリゲートして、不均衡なデータに永続的アクセスの脅威に対処する
- Authors: Sidahmed Benabderrahmane, Ngoc Hoang, Petko Valtchev, James Cheney, Talal Rahwan,
- Abstract要約: Advanced Persistent Threats (APTs) は高度で標的となるサイバー攻撃であり、システムへの不正アクセスと長期にわたって検出されないように設計されている。
AE-APTは,基本的なものからトランスフォーマーベースのものまで,一連のAutoEncoderメソッドを特徴とする,深層学習に基づくAPT検出ツールである。
その結果,AE-APTは競合他社に比べて検出速度が有意に高く,異常検出・ランク付け性能が優れていた。
- 参考スコア(独自算出の注目度): 4.619717316983648
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Advanced Persistent Threats (APTs) are sophisticated, targeted cyberattacks designed to gain unauthorized access to systems and remain undetected for extended periods. To evade detection, APT cyberattacks deceive defense layers with breaches and exploits, thereby complicating exposure by traditional anomaly detection-based security methods. The challenge of detecting APTs with machine learning is compounded by the rarity of relevant datasets and the significant imbalance in the data, which makes the detection process highly burdensome. We present AE-APT, a deep learning-based tool for APT detection that features a family of AutoEncoder methods ranging from a basic one to a Transformer-based one. We evaluated our tool on a suite of provenance trace databases produced by the DARPA Transparent Computing program, where APT-like attacks constitute as little as 0.004% of the data. The datasets span multiple operating systems, including Android, Linux, BSD, and Windows, and cover two attack scenarios. The outcomes showed that AE-APT has significantly higher detection rates compared to its competitors, indicating superior performance in detecting and ranking anomalies.
- Abstract(参考訳): Advanced Persistent Threats (APTs) は高度で標的となるサイバー攻撃であり、システムへの不正アクセスと長期にわたって検出されないように設計されている。
検出を回避するため、APTサイバー攻撃は防御層を侵害や悪用で騙し、従来の異常検出ベースのセキュリティ手法による露出を複雑にする。
機械学習によるAPTの検出の課題は、関連するデータセットの希少さとデータの大きな不均衡によって複雑化され、検出プロセスは非常に負担がかかる。
AE-APTは,基本的なものからトランスフォーマーベースのものまで,一連のAutoEncoderメソッドを特徴とする,深層学習に基づくAPT検出ツールである。
我々は、DARPA Transparent Computingプログラムが生成した実績トレースデータベースのスイート上で、APTライクな攻撃がデータの0.004%を占めるように評価した。
データセットは、Android、Linux、BSD、Windowsを含む複数のオペレーティングシステムにまたがっており、2つの攻撃シナリオをカバーする。
その結果,AE-APTは競合他社に比べて検出速度が有意に高く,異常検出・ランク付け性能が優れていた。
関連論文リスト
- IDU-Detector: A Synergistic Framework for Robust Masquerader Attack Detection [3.3821216642235608]
デジタル時代には、ユーザは個人データを企業データベースに格納し、データセキュリティを企業管理の中心とする。
大規模な攻撃面を考えると、アセットは弱い認証、脆弱性、マルウェアといった課題に直面している。
IDU-Detectorを導入し、侵入検知システム(IDS)とユーザ・エンティティ・ビヘイビア・アナリティクス(UEBA)を統合した。
この統合は、不正アクセスを監視し、システムギャップをブリッジし、継続的な監視を保証し、脅威識別を強化する。
論文 参考訳(メタデータ) (2024-11-09T13:03:29Z) - Preliminary study on artificial intelligence methods for cybersecurity threat detection in computer networks based on raw data packets [34.82692226532414]
本稿では,ネットワークトラフィック内の生パケットデータから直接リアルタイムに攻撃を検知できるディープラーニング手法について検討する。
コンピュータビジョンモデルを用いた処理に適した2次元画像表現を用いて,パケットをウィンドウに積み重ねて別々に認識する手法を提案する。
論文 参考訳(メタデータ) (2024-07-24T15:04:00Z) - CICAPT-IIOT: A provenance-based APT attack dataset for IIoT environment [1.841560106836332]
産業用モノのインターネット(Industrial Internet of Things, IIoT)は、スマートセンサー、高度な分析、産業プロセス内の堅牢な接続を統合する、変革的なパラダイムである。
Advanced Persistent Threats (APTs) は、そのステルス性、長く、標的とする性質のために特に重大な懸念を抱いている。
CICAPT-IIoTデータセットは、全体的なサイバーセキュリティ対策を開発するための基盤を提供する。
論文 参考訳(メタデータ) (2024-07-15T23:08:34Z) - A Federated Learning Approach for Multi-stage Threat Analysis in Advanced Persistent Threat Campaigns [25.97800399318373]
高度な永続的脅威(APT)のようなマルチステージの脅威は、データを盗み、インフラストラクチャを破壊することによって深刻なリスクを引き起こす。
APTは新たな攻撃ベクトルを使用し、ネットワークの存在を隠蔽することでシグネチャベースの検出を回避する。
本稿では,APTを検出するための3段階の非教師付きフェデレーション学習(FL)フレームワークを提案する。
論文 参考訳(メタデータ) (2024-06-19T03:34:41Z) - MMAUD: A Comprehensive Multi-Modal Anti-UAV Dataset for Modern Miniature
Drone Threats [37.981623262267036]
MMAUDは、ドローン検出、UAV型分類、軌道推定に焦点を当てて、現代の脅威検出手法における重要なギャップに対処する。
これは、熱とRGBを使用して特定のベタージュポイントでキャプチャされたデータセットよりも忠実度の高い実世界のシナリオに対処するための、ユニークな頭上の空中検出を提供する。
提案するモダリティは費用対効果が高く適応性が高いため,UAV脅威検出ツールの実験と実装が可能である。
論文 参考訳(メタデータ) (2024-02-06T04:57:07Z) - NODLINK: An Online System for Fine-Grained APT Attack Detection and Investigation [15.803901489811318]
NodLinkは、検出粒度を犠牲にすることなく高い検出精度を維持する最初のオンライン検出システムである。
そこで本研究では,APT攻撃検出における従来の手法よりも高速な,メモリ内キャッシュ,効率的な攻撃スクリーニング手法,および新しい近似アルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-11-04T05:36:59Z) - A Robust and Explainable Data-Driven Anomaly Detection Approach For
Power Electronics [56.86150790999639]
本稿では,2つの異常検出・分類手法,すなわち行列プロファイルアルゴリズムと異常変換器を提案する。
行列プロファイルアルゴリズムは、ストリーミング時系列データにおけるリアルタイム異常を検出するための一般化可能なアプローチとして適している。
検知器の感度、リコール、検出精度を調整するために、一連のカスタムフィルタが作成され、追加される。
論文 参考訳(メタデータ) (2022-09-23T06:09:35Z) - DAE : Discriminatory Auto-Encoder for multivariate time-series anomaly
detection in air transportation [68.8204255655161]
識別オートエンコーダ(DAE)と呼ばれる新しい異常検出モデルを提案する。
通常のLSTMベースのオートエンコーダのベースラインを使用するが、いくつかのデコーダがあり、それぞれ特定の飛行フェーズのデータを取得する。
その結果,DAEは精度と検出速度の両方で良好な結果が得られることがわかった。
論文 参考訳(メタデータ) (2021-09-08T14:07:55Z) - Automated Identification of Vulnerable Devices in Networks using Traffic
Data and Deep Learning [30.536369182792516]
脆弱性データベースのデータと組み合わせたデバイスタイプの識別は、ネットワーク内の脆弱なiotデバイスを特定できる。
信頼性の高いIoTデバイスタイプ識別のための2つの深層学習手法を提案し,評価する。
論文 参考訳(メタデータ) (2021-02-16T14:49:34Z) - RANK: AI-assisted End-to-End Architecture for Detecting Persistent
Attacks in Enterprise Networks [2.294014185517203]
APT(Advanced Persistent Threats)検出のためのエンドツーエンドAI支援アーキテクチャを提案する。
アーキテクチャは、1アラートテンプレートとマージ、2アラートグラフの構築、3アラートグラフをインシデントに分割、4インシデントスコアリングと順序付けの4つの連続したステップで構成されています。
分析対象のデータの3桁の削減,イシデントの革新的な抽出,抽出したインシデントのセキュリティ面でのスコア付けなど,広範な結果が得られた。
論文 参考訳(メタデータ) (2021-01-06T15:59:51Z) - Adversarial EXEmples: A Survey and Experimental Evaluation of Practical
Attacks on Machine Learning for Windows Malware Detection [67.53296659361598]
EXEmplesは、比較的少ない入力バイトを摂動することで、機械学習に基づく検出をバイパスすることができる。
我々は、機械学習モデルに対する過去の攻撃を包含し、一般化するだけでなく、3つの新たな攻撃を含む統一フレームワークを開発する。
これらの攻撃はFull DOS、Extended、Shiftと呼ばれ、DOSヘッダをそれぞれ操作し、拡張し、第1セクションの内容を変更することで、敵のペイロードを注入する。
論文 参考訳(メタデータ) (2020-08-17T07:16:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。