Aligning Teacher with Student Preferences for Tailored Training Data Generation
- URL: http://arxiv.org/abs/2406.19227v1
- Date: Thu, 27 Jun 2024 14:51:17 GMT
- Title: Aligning Teacher with Student Preferences for Tailored Training Data Generation
- Authors: Yantao Liu, Zhao Zhang, Zijun Yao, Shulin Cao, Lei Hou, Juanzi Li,
- Abstract summary: We propose ARTE, dubbed Aligning TeacheR with StudenT PreferencEs, to generate tailored training examples for Knowledge Distillation.
Specifically, we elicit draft questions and rationales from the teacher model, then collect student preferences on these questions and rationales.
In the end, we repeat the first step with the aligned teacher model to elicit tailored training examples for the student model on the target task.
- Score: 40.85451525264779
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) have shown significant promise as copilots in various tasks. Local deployment of LLMs on edge devices is necessary when handling privacy-sensitive data or latency-sensitive tasks. The computational constraints of such devices make direct deployment of powerful large-scale LLMs impractical, necessitating the Knowledge Distillation from large-scale models to lightweight models. Lots of work has been done to elicit diversity and quality training examples from LLMs, but little attention has been paid to aligning teacher instructional content based on student preferences, akin to "responsive teaching" in pedagogy. Thus, we propose ARTE, dubbed Aligning TeacheR with StudenT PreferencEs, a framework that aligns the teacher model with student preferences to generate tailored training examples for Knowledge Distillation. Specifically, we elicit draft questions and rationales from the teacher model, then collect student preferences on these questions and rationales using students' performance with in-context learning as a proxy, and finally align the teacher model with student preferences. In the end, we repeat the first step with the aligned teacher model to elicit tailored training examples for the student model on the target task. Extensive experiments on academic benchmarks demonstrate the superiority of ARTE over existing instruction-tuning datasets distilled from powerful LLMs. Moreover, we thoroughly investigate the generalization of ARTE, including the generalization of fine-tuned student models in reasoning ability and the generalization of aligned teacher models to generate tailored training data across tasks and students. In summary, our contributions lie in proposing a novel framework for tailored training example generation, demonstrating its efficacy in experiments, and investigating the generalization of both student & aligned teacher models in ARTE.
Related papers
- Interactive DualChecker for Mitigating Hallucinations in Distilling Large Language Models [7.632217365130212]
Large Language Models (LLMs) have demonstrated exceptional capabilities across various machine learning (ML) tasks.
These models can produce hallucinations, particularly in domains with incomplete knowledge.
We introduce DualChecker, an innovative framework designed to mitigate hallucinations and improve the performance of both teacher and student models.
arXiv Detail & Related papers (2024-08-22T12:04:04Z) - Self-Regulated Data-Free Knowledge Amalgamation for Text Classification [9.169836450935724]
We develop a lightweight student network that can learn from multiple teacher models without accessing their original training data.
To accomplish this, we propose STRATANET, a modeling framework that produces text data tailored to each teacher.
We evaluate our method on three benchmark text classification datasets with varying labels or domains.
arXiv Detail & Related papers (2024-06-16T21:13:30Z) - EmbedDistill: A Geometric Knowledge Distillation for Information
Retrieval [83.79667141681418]
Large neural models (such as Transformers) achieve state-of-the-art performance for information retrieval (IR)
We propose a novel distillation approach that leverages the relative geometry among queries and documents learned by the large teacher model.
We show that our approach successfully distills from both dual-encoder (DE) and cross-encoder (CE) teacher models to 1/10th size asymmetric students that can retain 95-97% of the teacher performance.
arXiv Detail & Related papers (2023-01-27T22:04:37Z) - Prototype-guided Cross-task Knowledge Distillation for Large-scale
Models [103.04711721343278]
Cross-task knowledge distillation helps to train a small student model to obtain a competitive performance.
We propose a Prototype-guided Cross-task Knowledge Distillation (ProC-KD) approach to transfer the intrinsic local-level object knowledge of a large-scale teacher network to various task scenarios.
arXiv Detail & Related papers (2022-12-26T15:00:42Z) - Distantly-Supervised Named Entity Recognition with Adaptive Teacher
Learning and Fine-grained Student Ensemble [56.705249154629264]
Self-training teacher-student frameworks are proposed to improve the robustness of NER models.
In this paper, we propose an adaptive teacher learning comprised of two teacher-student networks.
Fine-grained student ensemble updates each fragment of the teacher model with a temporal moving average of the corresponding fragment of the student, which enhances consistent predictions on each model fragment against noise.
arXiv Detail & Related papers (2022-12-13T12:14:09Z) - Reinforced Multi-Teacher Selection for Knowledge Distillation [54.72886763796232]
knowledge distillation is a popular method for model compression.
Current methods assign a fixed weight to a teacher model in the whole distillation.
Most of the existing methods allocate an equal weight to every teacher model.
In this paper, we observe that, due to the complexity of training examples and the differences in student model capability, learning differentially from teacher models can lead to better performance of student models distilled.
arXiv Detail & Related papers (2020-12-11T08:56:39Z) - Learning to Reweight with Deep Interactions [104.68509759134878]
We propose an improved data reweighting algorithm, in which the student model provides its internal states to the teacher model.
Experiments on image classification with clean/noisy labels and neural machine translation empirically demonstrate that our algorithm makes significant improvement over previous methods.
arXiv Detail & Related papers (2020-07-09T09:06:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.