Advection Augmented Convolutional Neural Networks
- URL: http://arxiv.org/abs/2406.19253v1
- Date: Thu, 27 Jun 2024 15:22:21 GMT
- Title: Advection Augmented Convolutional Neural Networks
- Authors: Niloufar Zakariaei, Siddharth Rout, Eldad Haber, Moshe Eliasof,
- Abstract summary: We introduce a physically inspired architecture for the solution of such problems.
We show that the proposed operator allows for the non-local transformation of information.
We then complement it with Reaction and Diffusion neural components to form a network that mimics the Reaction-Advection-Diffusion network.
- Score: 6.805997961535213
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Many problems in physical sciences are characterized by the prediction of space-time sequences. Such problems range from weather prediction to the analysis of disease propagation and video prediction. Modern techniques for the solution of these problems typically combine Convolution Neural Networks (CNN) architecture with a time prediction mechanism. However, oftentimes, such approaches underperform in the long-range propagation of information and lack explainability. In this work, we introduce a physically inspired architecture for the solution of such problems. Namely, we propose to augment CNNs with advection by designing a novel semi-Lagrangian push operator. We show that the proposed operator allows for the non-local transformation of information compared with standard convolutional kernels. We then complement it with Reaction and Diffusion neural components to form a network that mimics the Reaction-Advection-Diffusion equation, in high dimensions. We demonstrate the effectiveness of our network on a number of spatio-temporal datasets that show their merit.
Related papers
- The Unreasonable Effectiveness of Solving Inverse Problems with Neural Networks [24.766470360665647]
We show that neural networks trained to learn solutions to inverse problems can find better solutions than classicals even on their training set.
Our findings suggest an alternative use for neural networks: rather than generalizing to new data for fast inference, they can also be used to find better solutions on known data.
arXiv Detail & Related papers (2024-08-15T12:38:10Z) - Residual resampling-based physics-informed neural network for neutron diffusion equations [7.105073499157097]
The neutron diffusion equation plays a pivotal role in the analysis of nuclear reactors.
Traditional PINN approaches often utilize fully connected network (FCN) architecture.
R2-PINN effectively overcomes the limitations inherent in current methods, providing more accurate and robust solutions for neutron diffusion equations.
arXiv Detail & Related papers (2024-06-23T13:49:31Z) - Solving Large-scale Spatial Problems with Convolutional Neural Networks [88.31876586547848]
We employ transfer learning to improve training efficiency for large-scale spatial problems.
We propose that a convolutional neural network (CNN) can be trained on small windows of signals, but evaluated on arbitrarily large signals with little to no performance degradation.
arXiv Detail & Related papers (2023-06-14T01:24:42Z) - GNN-based physics solver for time-independent PDEs [1.7616042687330642]
Time-independent problems pose the challenge of requiring long-range exchange of information across the computational domain for obtaining accurate predictions.
We present two graph neural networks (GNNs) to overcome this challenge - the Edge Augmented GNN and the Multi-GNN.
We show that both these networks perform significantly better (by a factor of 1.5 to 2) than baseline methods when applied to time-independent solid mechanics problems.
arXiv Detail & Related papers (2023-03-28T02:04:43Z) - A predictive physics-aware hybrid reduced order model for reacting flows [65.73506571113623]
A new hybrid predictive Reduced Order Model (ROM) is proposed to solve reacting flow problems.
The number of degrees of freedom is reduced from thousands of temporal points to a few POD modes with their corresponding temporal coefficients.
Two different deep learning architectures have been tested to predict the temporal coefficients.
arXiv Detail & Related papers (2023-01-24T08:39:20Z) - STGIN: A Spatial Temporal Graph-Informer Network for Long Sequence
Traffic Speed Forecasting [8.596556653895028]
This study proposes a new spatial-temporal neural network architecture to handle the long-term traffic parameters forecasting issue.
The attention mechanism potentially guarantees long-term prediction performance without significant information loss from distant inputs.
arXiv Detail & Related papers (2022-10-01T05:58:22Z) - An advanced spatio-temporal convolutional recurrent neural network for
storm surge predictions [73.4962254843935]
We study the capability of artificial neural network models to emulate storm surge based on the storm track/size/intensity history.
This study presents a neural network model that can predict storm surge, informed by a database of synthetic storm simulations.
arXiv Detail & Related papers (2022-04-18T23:42:18Z) - Space-Time Graph Neural Networks [104.55175325870195]
We introduce space-time graph neural network (ST-GNN) to jointly process the underlying space-time topology of time-varying network data.
Our analysis shows that small variations in the network topology and time evolution of a system does not significantly affect the performance of ST-GNNs.
arXiv Detail & Related papers (2021-10-06T16:08:44Z) - Training Feedback Spiking Neural Networks by Implicit Differentiation on
the Equilibrium State [66.2457134675891]
Spiking neural networks (SNNs) are brain-inspired models that enable energy-efficient implementation on neuromorphic hardware.
Most existing methods imitate the backpropagation framework and feedforward architectures for artificial neural networks.
We propose a novel training method that does not rely on the exact reverse of the forward computation.
arXiv Detail & Related papers (2021-09-29T07:46:54Z) - Neural Networks with Recurrent Generative Feedback [61.90658210112138]
We instantiate this design on convolutional neural networks (CNNs)
In the experiments, CNN-F shows considerably improved adversarial robustness over conventional feedforward CNNs on standard benchmarks.
arXiv Detail & Related papers (2020-07-17T19:32:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.