Commodification of Compute
- URL: http://arxiv.org/abs/2406.19261v2
- Date: Wed, 3 Jul 2024 16:12:32 GMT
- Title: Commodification of Compute
- Authors: Jesper Kristensen, David Wender, Carl Anthony,
- Abstract summary: This paper introduces a novel global platform for the commodification of compute hours, termed the Global Compute Exchange (GCX)
The GCX creates a secure, transparent, and efficient marketplace for buying and selling computational power.
This platform aims to revolutionize the computational resource market by fostering a decentralized, efficient, and transparent ecosystem.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The rapid advancements in artificial intelligence, big data analytics, and cloud computing have precipitated an unprecedented demand for computational resources. However, the current landscape of computational resource allocation is characterized by significant inefficiencies, including underutilization and price volatility. This paper addresses these challenges by introducing a novel global platform for the commodification of compute hours, termed the Global Compute Exchange (GCX) (Patent Pending). The GCX leverages blockchain technology and smart contracts to create a secure, transparent, and efficient marketplace for buying and selling computational power. The GCX is built in a layered fashion, comprising Market, App, Clearing, Risk Management, Exchange (Offchain), and Blockchain (Onchain) layers, each ensuring a robust and efficient operation. This platform aims to revolutionize the computational resource market by fostering a decentralized, efficient, and transparent ecosystem that ensures equitable access to computing power, stimulates innovation, and supports diverse user needs on a global scale. By transforming compute hours into a tradable commodity, the GCX seeks to optimize resource utilization, stabilize pricing, and democratize access to computational resources. This paper explores the technological infrastructure, market potential, and societal impact of the GCX, positioning it as a pioneering solution poised to drive the next wave of innovation in commodities and compute.
Related papers
- DAM: A Universal Dual Attention Mechanism for Multimodal Timeseries Cryptocurrency Trend Forecasting [3.8965079384103865]
This paper presents a novel Dual Attention Mechanism (DAM) for forecasting cryptocurrency trends using multimodal time-series data.
Our approach integrates critical cryptocurrency metrics with sentiment data from news and social media analyzed through CryptoBERT.
By combining elements of distributed systems, natural language processing, and financial forecasting, our method outperforms conventional models like LSTM and Transformer by up to 20% in prediction accuracy.
arXiv Detail & Related papers (2024-05-01T13:58:01Z) - Generative AI-enabled Quantum Computing Networks and Intelligent
Resource Allocation [80.78352800340032]
Quantum computing networks execute large-scale generative AI computation tasks and advanced quantum algorithms.
efficient resource allocation in quantum computing networks is a critical challenge due to qubit variability and network complexity.
We introduce state-of-the-art reinforcement learning (RL) algorithms, from generative learning to quantum machine learning for optimal quantum resource allocation.
arXiv Detail & Related papers (2024-01-13T17:16:38Z) - A New Paradigm in Blockchain-based Financial Aid Distribution [0.7366405857677227]
Technology has emerged as a game-changer in a variety of industries, providing robust solutions that can conventional procedures.
The financial sector is making substantial progress toward implementing blockchain solutions for a variety of operations.
The healthcare industry is simultaneously incorporating this technology into systems for managing medical records, tracing supply chains, and data management.
Diverse industries, including real estate, energy, and government, are actively investigating the potential of blockchain to improve efficiency, security, and transparency.
arXiv Detail & Related papers (2023-11-14T19:41:24Z) - Sustainable AIGC Workload Scheduling of Geo-Distributed Data Centers: A
Multi-Agent Reinforcement Learning Approach [48.18355658448509]
Recent breakthroughs in generative artificial intelligence have triggered a surge in demand for machine learning training, which poses significant cost burdens and environmental challenges due to its substantial energy consumption.
Scheduling training jobs among geographically distributed cloud data centers unveils the opportunity to optimize the usage of computing capacity powered by inexpensive and low-carbon energy.
We propose an algorithm based on multi-agent reinforcement learning and actor-critic methods to learn the optimal collaborative scheduling strategy through interacting with a cloud system built with real-life workload patterns, energy prices, and carbon intensities.
arXiv Detail & Related papers (2023-04-17T02:12:30Z) - Future Computer Systems and Networking Research in the Netherlands: A
Manifesto [137.47124933818066]
We draw attention to CompSys as a vital part of ICT.
Each of the Top Sectors of the Dutch Economy, each route in the National Research Agenda, and each of the UN Sustainable Development Goals pose challenges that cannot be addressed without CompSys advances.
arXiv Detail & Related papers (2022-05-26T11:02:29Z) - A Novel Neuromorphic Processors Realization of Spiking Deep
Reinforcement Learning for Portfolio Management [1.3190581566723918]
This paper proposes a spiking deep reinforcement learning (SDRL) algorithm that can predict financial markets based on unpredictable environments.
It is optimized forIntel's Loihi neuromorphic processor and provides 186x and 516x energy consumption reduction.
arXiv Detail & Related papers (2022-03-26T21:31:12Z) - Applications of blockchain and artificial intelligence technologies for
enabling prosumers in smart grids: A review [12.609078866334615]
Governments' net zero emission target aims at increasing the share of renewable energy sources.
This paper addresses how to incorporate the blockchain and AI in the smart grids for facilitating prosumers to participate in energy markets.
arXiv Detail & Related papers (2022-02-21T10:27:31Z) - A Machine Learning Approach for Task and Resource Allocation in Mobile
Edge Computing Based Networks [108.57859531628264]
A joint task, spectrum, and transmit power allocation problem is investigated for a wireless network.
The proposed algorithm can reduce the number of iterations needed for convergence and the maximal delay among all users by up to 18% and 11.1% compared to the standard Q-learning algorithm.
arXiv Detail & Related papers (2020-07-20T13:46:42Z) - Demand-Side Scheduling Based on Multi-Agent Deep Actor-Critic Learning
for Smart Grids [56.35173057183362]
We consider the problem of demand-side energy management, where each household is equipped with a smart meter that is able to schedule home appliances online.
The goal is to minimize the overall cost under a real-time pricing scheme.
We propose the formulation of a smart grid environment as a Markov game.
arXiv Detail & Related papers (2020-05-05T07:32:40Z) - A Deep Reinforcement Learning Framework for Continuous Intraday Market
Bidding [69.37299910149981]
A key component for the successful renewable energy sources integration is the usage of energy storage.
We propose a novel modelling framework for the strategic participation of energy storage in the European continuous intraday market.
An distributed version of the fitted Q algorithm is chosen for solving this problem due to its sample efficiency.
Results indicate that the agent converges to a policy that achieves in average higher total revenues than the benchmark strategy.
arXiv Detail & Related papers (2020-04-13T13:50:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.