Optimizing Day-Ahead Energy Trading with Proximal Policy Optimization and Blockchain
- URL: http://arxiv.org/abs/2508.01888v1
- Date: Sun, 03 Aug 2025 18:45:17 GMT
- Title: Optimizing Day-Ahead Energy Trading with Proximal Policy Optimization and Blockchain
- Authors: Navneet Verma, Ying Xie,
- Abstract summary: This paper proposes a novel framework that integrates the Proximal Policy Optimization (PPO) algorithm, a state-of-the-art reinforcement learning method, and blockchain technology.<n>We introduce a comprehensive framework that employs RL agent for multi-objective energy optimization and blockchain for tamper-proof data and transaction management.<n>Our contributions include a novel system architecture, curriculum learning for robust agent development, and actionable policy insights for practical deployment.
- Score: 0.8909482883800253
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The increasing penetration of renewable energy sources in day-ahead energy markets introduces challenges in balancing supply and demand, ensuring grid resilience, and maintaining trust in decentralized trading systems. This paper proposes a novel framework that integrates the Proximal Policy Optimization (PPO) algorithm, a state-of-the-art reinforcement learning method, with blockchain technology to optimize automated trading strategies for prosumers in day-ahead energy markets. We introduce a comprehensive framework that employs RL agent for multi-objective energy optimization and blockchain for tamper-proof data and transaction management. Simulations using real-world data from the Electricity Reliability Council of Texas (ERCOT) demonstrate the effectiveness of our approach. The RL agent achieves demand-supply balancing within 2\% and maintains near-optimal supply costs for the majority of the operating hours. Moreover, it generates robust battery storage policies capable of handling variability in solar and wind generation. All decisions are recorded on an Algorand-based blockchain, ensuring transparency, auditability, and security - key enablers for trustworthy multi-agent energy trading. Our contributions include a novel system architecture, curriculum learning for robust agent development, and actionable policy insights for practical deployment.
Related papers
- Joint Resource Management for Energy-efficient UAV-assisted SWIPT-MEC: A Deep Reinforcement Learning Approach [50.52139512096988]
6G Internet of Things (IoT) networks face challenges in remote areas and disaster scenarios where ground infrastructure is unavailable.<n>This paper proposes a novel aerial unmanned vehicle (UAV)-assisted computing (MEC) system enhanced by directional antennas to provide both computational and energy support for ground edge terminals.
arXiv Detail & Related papers (2025-05-06T06:46:19Z) - Commodification of Compute [0.0]
This paper introduces a novel global platform for the commodification of compute hours, termed the Global Compute Exchange (GCX)
The GCX creates a secure, transparent, and efficient marketplace for buying and selling computational power.
This platform aims to revolutionize the computational resource market by fostering a decentralized, efficient, and transparent ecosystem.
arXiv Detail & Related papers (2024-06-27T15:32:31Z) - Decentralized Energy Marketplace via NFTs and AI-based Agents [4.149465156450793]
The paper introduces an advanced Decentralized Energy Marketplace (DEM) integrating blockchain technology and artificial intelligence.
The proposed framework uses Non-Fungible Tokens (NFTs) to represent unique energy profiles in a transparent and secure trading environment.
A notable innovation is the use of smart contracts, ensuring high efficiency and integrity in energy transactions.
arXiv Detail & Related papers (2023-11-17T09:15:43Z) - Interpretable Deep Reinforcement Learning for Optimizing Heterogeneous
Energy Storage Systems [11.03157076666012]
Energy storage systems (ESS) are pivotal component in the energy market, serving as both energy suppliers and consumers.
To enhance ESS flexibility within the energy market, a heterogeneous photovoltaic-ESS (PV-ESS) is proposed.
We develop a comprehensive cost function that takes into account degradation, capital, and operation/maintenance costs to reflect real-world scenarios.
arXiv Detail & Related papers (2023-10-20T02:26:17Z) - On-line reinforcement learning for optimization of real-life energy
trading strategy [0.9790236766474201]
This paper considers automated trading on the day-ahead (DA) energy market by a medium-sized prosumer.
We formalize a framework in which an applicable in real-life strategy can be optimized with off-line data.
We use state-of-the-art reinforcement learning (RL) algorithms to optimize this strategy.
arXiv Detail & Related papers (2023-03-28T19:27:02Z) - Optimal Planning of Hybrid Energy Storage Systems using Curtailed
Renewable Energy through Deep Reinforcement Learning [0.0]
We propose a sophisticated deep reinforcement learning (DRL) methodology with a policy-based algorithm to plan energy storage systems (ESS)
A quantitative performance comparison proved that the DRL agent outperforms the scenario-based optimization (SO) algorithm.
The corresponding results confirmed that the DRL agent learns the way like what a human expert would do, suggesting reliable application of the proposed methodology.
arXiv Detail & Related papers (2022-12-12T02:24:50Z) - Distributed Energy Management and Demand Response in Smart Grids: A
Multi-Agent Deep Reinforcement Learning Framework [53.97223237572147]
This paper presents a multi-agent Deep Reinforcement Learning (DRL) framework for autonomous control and integration of renewable energy resources into smart power grid systems.
In particular, the proposed framework jointly considers demand response (DR) and distributed energy management (DEM) for residential end-users.
arXiv Detail & Related papers (2022-11-29T01:18:58Z) - Improving Robustness of Reinforcement Learning for Power System Control
with Adversarial Training [71.7750435554693]
We show that several state-of-the-art RL agents proposed for power system control are vulnerable to adversarial attacks.
Specifically, we use an adversary Markov Decision Process to learn an attack policy, and demonstrate the potency of our attack.
We propose to use adversarial training to increase the robustness of RL agent against attacks and avoid infeasible operational decisions.
arXiv Detail & Related papers (2021-10-18T00:50:34Z) - Regulation conform DLT-operable payment adapter based on trustless -
justified trust combined generalized state channels [77.34726150561087]
Economy of Things (EoT) will be based on software agents running on peer-to-peer trustless networks.
We give an overview of current solutions that differ in their fundamental values and technological possibilities.
We propose to combine the strengths of the crypto based, decentralized trustless elements with established and well regulated means of payment.
arXiv Detail & Related papers (2020-07-03T10:45:55Z) - A Deep Reinforcement Learning Framework for Continuous Intraday Market
Bidding [69.37299910149981]
A key component for the successful renewable energy sources integration is the usage of energy storage.
We propose a novel modelling framework for the strategic participation of energy storage in the European continuous intraday market.
An distributed version of the fitted Q algorithm is chosen for solving this problem due to its sample efficiency.
Results indicate that the agent converges to a policy that achieves in average higher total revenues than the benchmark strategy.
arXiv Detail & Related papers (2020-04-13T13:50:13Z) - Multi-Agent Meta-Reinforcement Learning for Self-Powered and Sustainable
Edge Computing Systems [87.4519172058185]
An effective energy dispatch mechanism for self-powered wireless networks with edge computing capabilities is studied.
A novel multi-agent meta-reinforcement learning (MAMRL) framework is proposed to solve the formulated problem.
Experimental results show that the proposed MAMRL model can reduce up to 11% non-renewable energy usage and by 22.4% the energy cost.
arXiv Detail & Related papers (2020-02-20T04:58:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.