論文の概要: Read Anywhere Pointed: Layout-aware GUI Screen Reading with Tree-of-Lens Grounding
- arxiv url: http://arxiv.org/abs/2406.19263v2
- Date: Fri, 25 Oct 2024 18:16:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-29 12:18:08.176212
- Title: Read Anywhere Pointed: Layout-aware GUI Screen Reading with Tree-of-Lens Grounding
- Title(参考訳): ありとあらゆるところを読む:木々の接地で読み取るレイアウト対応GUIスクリーン
- Authors: Yue Fan, Lei Ding, Ching-Chen Kuo, Shan Jiang, Yang Zhao, Xinze Guan, Jie Yang, Yi Zhang, Xin Eric Wang,
- Abstract要約: そこで我々は,ScreenPRタスクに対処するために,新しいToLグラウンド機構を用いたToLエージェントを提案する。
入力点座標とそれに対応するGUIスクリーンショットに基づいて、我々のToLエージェントは階層的なレイアウトツリーを構築する。
木をベースとしたToLエージェントは,指定領域の内容だけでなく,要素間のレイアウトや空間的関係も理解している。
- 参考スコア(独自算出の注目度): 30.624179161014283
- License:
- Abstract: Graphical User Interfaces (GUIs) are central to our interaction with digital devices and growing efforts have been made to build models for various GUI understanding tasks. However, these efforts largely overlook an important GUI-referring task: screen reading based on user-indicated points, which we name the Screen Point-and-Read (ScreenPR) task. Currently, this task is predominantly handled by rigid accessible screen reading tools, in great need of new models driven by advancements in Multimodal Large Language Models (MLLMs). In this paper, we propose a Tree-of-Lens (ToL) agent, utilizing a novel ToL grounding mechanism, to address the ScreenPR task. Based on the input point coordinate and the corresponding GUI screenshot, our ToL agent constructs a Hierarchical Layout Tree. Based on the tree, our ToL agent not only comprehends the content of the indicated area but also articulates the layout and spatial relationships between elements. Such layout information is crucial for accurately interpreting information on the screen, distinguishing our ToL agent from other screen reading tools. We also thoroughly evaluate the ToL agent against other baselines on a newly proposed ScreenPR benchmark, which includes GUIs from mobile, web, and operating systems. Last but not least, we test the ToL agent on mobile GUI navigation tasks, demonstrating its utility in identifying incorrect actions along the path of agent execution trajectories. Code and data: https://screen-point-and-read.github.io
- Abstract(参考訳): グラフィカルユーザインタフェース(GUI)は、デジタルデバイスとのインタラクションの中心であり、様々なGUI理解タスクのためのモデルを構築するための努力が増えている。
しかし、これらの取り組みはGUI参照の重要なタスクを概ね見落としている。
現在、このタスクは、MLLM(Multimodal Large Language Models)の進歩によって駆動される新しいモデルを必要とする、厳密なスクリーン読み取りツールによって主に処理されている。
本論文では,ScreenPRタスクに対処するために,新しいToLグラウンド機構を用いたToLエージェントを提案する。
入力点座標とそれに対応するGUIスクリーンショットに基づいて、我々のToLエージェントは階層的なレイアウトツリーを構築する。
木をベースとしたToLエージェントは,指定領域の内容だけでなく,要素間のレイアウトや空間的関係も理解している。
このようなレイアウト情報は、ToLエージェントと他のスクリーン読み取りツールを区別して、画面上の情報を正確に解釈するために重要である。
また,モバイル,Web,オペレーティングシステムのGUIを含むScreenPRベンチマークにおいて,ToLエージェントを他のベースラインに対して徹底的に評価する。
最後に、モバイルGUIナビゲーションタスク上でToLエージェントをテストし、エージェント実行軌跡の経路に沿って不正なアクションを識別するその有用性を実証する。
コードとデータ:https://screen-point-and-read.github.io
関連論文リスト
- TRISHUL: Towards Region Identification and Screen Hierarchy Understanding for Large VLM based GUI Agents [0.6827423171182154]
TRISHULは、総合的なGUI理解のための一般のLVLMを強化する、トレーニング不要のフレームワークである。
この結果は、ScreenSpot、VisualWebBench、AITW、Mind2WebデータセットをまたいだアクショングラウンドにおけるTRISHULの優れたパフォーマンスを示している。
GUI参照の場合、TRISHULはScreenPRベンチマークのToLエージェントを超え、堅牢で適応可能なGUI理解のための新しい標準を設定している。
論文 参考訳(メタデータ) (2025-02-12T09:12:30Z) - Aguvis: Unified Pure Vision Agents for Autonomous GUI Interaction [69.57190742976091]
自律型GUIエージェントのための統合視覚ベースのフレームワークであるAguvisを紹介する。
提案手法は,画像に基づく観察と,自然言語の接地命令を視覚要素に活用する。
これまでの作業の限界に対処するため、モデル内に明確な計画と推論を統合する。
論文 参考訳(メタデータ) (2024-12-05T18:58:26Z) - Ponder & Press: Advancing Visual GUI Agent towards General Computer Control [13.39115823642937]
Ponder & Press(ポンダー・アンド・プレス)は、視覚的入力のみを使用する汎用コンピュータ制御のための分断型フレームワークである。
我々のエージェントは、幅広い応用に適用可能な、多目的で人間のような相互作用パラダイムを提供する。
論文 参考訳(メタデータ) (2024-12-02T08:35:31Z) - Large Language Model-Brained GUI Agents: A Survey [42.82362907348966]
マルチモーダルモデルはGUI自動化の新しい時代を支えてきた。
彼らは自然言語理解、コード生成、視覚処理において例外的な能力を示した。
これらのエージェントはパラダイムシフトを表しており、ユーザーは単純な会話コマンドで複雑なマルチステップタスクを実行できる。
論文 参考訳(メタデータ) (2024-11-27T12:13:39Z) - ShowUI: One Vision-Language-Action Model for GUI Visual Agent [80.50062396585004]
グラフィカルユーザインタフェース(GUI)アシスタントの構築は、人間のワークフロー生産性を向上させるための大きな約束である。
デジタルワールドにおける視覚言語アクションモデル、すなわちShowUIを開発し、以下のイノベーションを特徴とする。
256Kデータを使用した軽量な2BモデルであるShowUIは、ゼロショットのスクリーンショットグラウンドで75.1%の精度を実現している。
論文 参考訳(メタデータ) (2024-11-26T14:29:47Z) - GUICourse: From General Vision Language Models to Versatile GUI Agents [75.5150601913659]
GUICourseは、ビジュアルベースのGUIエージェントをトレーニングするためのデータセットスイートです。
まず、OCRとVLMのグラウンド機能を強化するためにGUIEnvデータセットを導入する。
次にGUIActとGUIChatデータセットを導入し、GUIコンポーネントやインタラクションに関する知識を充実させます。
論文 参考訳(メタデータ) (2024-06-17T08:30:55Z) - GUI-WORLD: A Dataset for GUI-oriented Multimodal LLM-based Agents [73.9254861755974]
本稿では,人間のMLLMアノテーションを巧みに作成するGUI-Worldという新しいデータセットを提案する。
各種GUIコンテンツの理解において,ImageLLMs や VideoLLMs などの最先端MLLMの能力を評価する。
論文 参考訳(メタデータ) (2024-06-16T06:56:53Z) - VideoGUI: A Benchmark for GUI Automation from Instructional Videos [78.97292966276706]
VideoGUIは、ビジュアル中心のGUIタスクでGUIアシスタントを評価するために設計された、新しいマルチモーダルベンチマークである。
高品質なWebインストラクショナルビデオから得られたベンチマークは、プロフェッショナルと新しいソフトウェアに関わるタスクに焦点を当てている。
評価の結果,SoTAの大規模マルチモーダルモデルであるGPT4oでさえ,視覚中心のGUIタスクでは不十分であることが判明した。
論文 参考訳(メタデータ) (2024-06-14T17:59:08Z) - SeeClick: Harnessing GUI Grounding for Advanced Visual GUI Agents [17.43878828389188]
タスク自動化のためのスクリーンショットのみに依存する新しいビジュアルグラフィカルユーザインタフェース(GUI)エージェントであるSeeClickを提案する。
この課題に対処するため,GUIグラウンディングによるSeeClickの改良を提案し,GUIグラウンディングデータのキュレーションを自動化する手法を考案した。
また、モバイル、デスクトップ、Web環境を含む初めての現実的なGUIグラウンドティングベンチマークであるScreenSpotも作成しました。
論文 参考訳(メタデータ) (2024-01-17T08:10:35Z) - From Pixels to UI Actions: Learning to Follow Instructions via Graphical
User Interfaces [66.85108822706489]
本稿では,人間がよく使う概念的インタフェースを用いて,デジタル世界と対話するエージェントを作成することに焦点を当てる。
このようなエージェントは、タスクに従うGUIベースの命令のMiniWob++ベンチマークで、人間のクラウドワーカーより優れています。
論文 参考訳(メタデータ) (2023-05-31T23:39:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。