Read Anywhere Pointed: Layout-aware GUI Screen Reading with Tree-of-Lens Grounding
- URL: http://arxiv.org/abs/2406.19263v2
- Date: Fri, 25 Oct 2024 18:16:21 GMT
- Title: Read Anywhere Pointed: Layout-aware GUI Screen Reading with Tree-of-Lens Grounding
- Authors: Yue Fan, Lei Ding, Ching-Chen Kuo, Shan Jiang, Yang Zhao, Xinze Guan, Jie Yang, Yi Zhang, Xin Eric Wang,
- Abstract summary: We propose a Tree-of-Lens (ToL) agent, utilizing a novel ToL grounding mechanism, to address the ScreenPR task.
Based on the input point coordinate and the corresponding GUI screenshot, our ToL agent constructs a Hierarchical Layout Tree.
Based on the tree, our ToL agent not only comprehends the content of the indicated area but also articulates the layout and spatial relationships between elements.
- Score: 30.624179161014283
- License:
- Abstract: Graphical User Interfaces (GUIs) are central to our interaction with digital devices and growing efforts have been made to build models for various GUI understanding tasks. However, these efforts largely overlook an important GUI-referring task: screen reading based on user-indicated points, which we name the Screen Point-and-Read (ScreenPR) task. Currently, this task is predominantly handled by rigid accessible screen reading tools, in great need of new models driven by advancements in Multimodal Large Language Models (MLLMs). In this paper, we propose a Tree-of-Lens (ToL) agent, utilizing a novel ToL grounding mechanism, to address the ScreenPR task. Based on the input point coordinate and the corresponding GUI screenshot, our ToL agent constructs a Hierarchical Layout Tree. Based on the tree, our ToL agent not only comprehends the content of the indicated area but also articulates the layout and spatial relationships between elements. Such layout information is crucial for accurately interpreting information on the screen, distinguishing our ToL agent from other screen reading tools. We also thoroughly evaluate the ToL agent against other baselines on a newly proposed ScreenPR benchmark, which includes GUIs from mobile, web, and operating systems. Last but not least, we test the ToL agent on mobile GUI navigation tasks, demonstrating its utility in identifying incorrect actions along the path of agent execution trajectories. Code and data: https://screen-point-and-read.github.io
Related papers
- TRISHUL: Towards Region Identification and Screen Hierarchy Understanding for Large VLM based GUI Agents [0.6827423171182154]
TRISHUL is a training-free framework that enhances generalist LVLMs for holistic GUI comprehension.
Our results demonstrate TRISHUL's superior performance in action grounding across the ScreenSpot, VisualWebBench, AITW, and Mind2Web datasets.
For GUI referring, TRISHUL surpasses the ToL agent on the ScreenPR benchmark, setting a new standard for robust and adaptable GUI comprehension.
arXiv Detail & Related papers (2025-02-12T09:12:30Z) - Aguvis: Unified Pure Vision Agents for Autonomous GUI Interaction [69.57190742976091]
We introduce Aguvis, a unified vision-based framework for autonomous GUI agents.
Our approach leverages image-based observations, and grounding instructions in natural language to visual elements.
To address the limitations of previous work, we integrate explicit planning and reasoning within the model.
arXiv Detail & Related papers (2024-12-05T18:58:26Z) - Ponder & Press: Advancing Visual GUI Agent towards General Computer Control [13.39115823642937]
Ponder & Press is a divide-and-conquer framework for general computer control using only visual input.
Our agent offers a versatile, human-like interaction paradigm applicable to a wide range of applications.
arXiv Detail & Related papers (2024-12-02T08:35:31Z) - Large Language Model-Brained GUI Agents: A Survey [42.82362907348966]
multimodal models have ushered in a new era of GUI automation.
They have demonstrated exceptional capabilities in natural language understanding, code generation, and visual processing.
These agents represent a paradigm shift, enabling users to perform intricate, multi-step tasks through simple conversational commands.
arXiv Detail & Related papers (2024-11-27T12:13:39Z) - ShowUI: One Vision-Language-Action Model for GUI Visual Agent [80.50062396585004]
Building Graphical User Interface (GUI) assistants holds significant promise for enhancing human workflow productivity.
We develop a vision-language-action model in digital world, namely ShowUI, which features the following innovations.
ShowUI, a lightweight 2B model using 256K data, achieves a strong 75.1% accuracy in zero-shot screenshot grounding.
arXiv Detail & Related papers (2024-11-26T14:29:47Z) - GUICourse: From General Vision Language Models to Versatile GUI Agents [75.5150601913659]
We contribute GUICourse, a suite of datasets to train visual-based GUI agents.
First, we introduce the GUIEnv dataset to strengthen the OCR and grounding capabilities of VLMs.
Then, we introduce the GUIAct and GUIChat datasets to enrich their knowledge of GUI components and interactions.
arXiv Detail & Related papers (2024-06-17T08:30:55Z) - GUI-WORLD: A Dataset for GUI-oriented Multimodal LLM-based Agents [73.9254861755974]
This paper introduces a new dataset, called GUI-World, which features meticulously crafted Human-MLLM annotations.
We evaluate the capabilities of current state-of-the-art MLLMs, including ImageLLMs and VideoLLMs, in understanding various types of GUI content.
arXiv Detail & Related papers (2024-06-16T06:56:53Z) - VideoGUI: A Benchmark for GUI Automation from Instructional Videos [78.97292966276706]
VideoGUI is a novel multi-modal benchmark designed to evaluate GUI assistants on visual-centric GUI tasks.
Sourced from high-quality web instructional videos, our benchmark focuses on tasks involving professional and novel software.
Our evaluation reveals that even the SoTA large multimodal model GPT4o performs poorly on visual-centric GUI tasks.
arXiv Detail & Related papers (2024-06-14T17:59:08Z) - SeeClick: Harnessing GUI Grounding for Advanced Visual GUI Agents [17.43878828389188]
We propose a novel visual Graphical User Interface (GUI) agent, SeeClick, which only relies on screenshots for task automation.
To tackle this challenge, we propose to enhance SeeClick with GUI grounding pre-training and devise a method to automate the curation of GUI grounding data.
We have also created ScreenSpot, the first realistic GUI grounding benchmark that encompasses mobile, desktop, and web environments.
arXiv Detail & Related papers (2024-01-17T08:10:35Z) - From Pixels to UI Actions: Learning to Follow Instructions via Graphical
User Interfaces [66.85108822706489]
This paper focuses on creating agents that interact with the digital world using the same conceptual interface that humans commonly use.
It is possible for such agents to outperform human crowdworkers on the MiniWob++ benchmark of GUI-based instruction following tasks.
arXiv Detail & Related papers (2023-05-31T23:39:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.