論文の概要: The Odyssey of Commonsense Causality: From Foundational Benchmarks to Cutting-Edge Reasoning
- arxiv url: http://arxiv.org/abs/2406.19307v1
- Date: Thu, 27 Jun 2024 16:30:50 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-28 13:28:34.970411
- Title: The Odyssey of Commonsense Causality: From Foundational Benchmarks to Cutting-Edge Reasoning
- Title(参考訳): Commonsense Causalityのオデュッセイ:基礎ベンチマークからカットエッジ推論まで
- Authors: Shaobo Cui, Zhijing Jin, Bernhard Schölkopf, Boi Faltings,
- Abstract要約: 常識の因果関係を理解することは、人々が現実世界の原理をよりよく理解するのに役立ちます。
その重要性にもかかわらず、このトピックの体系的な探索は特に欠落している。
本研究の目的は、体系的な概要の提供、最近の進歩に関する学者の更新、初心者のための実践的なガイドを提供することである。
- 参考スコア(独自算出の注目度): 70.16523526957162
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Understanding commonsense causality is a unique mark of intelligence for humans. It helps people understand the principles of the real world better and benefits the decision-making process related to causation. For instance, commonsense causality is crucial in judging whether a defendant's action causes the plaintiff's loss in determining legal liability. Despite its significance, a systematic exploration of this topic is notably lacking. Our comprehensive survey bridges this gap by focusing on taxonomies, benchmarks, acquisition methods, qualitative reasoning, and quantitative measurements in commonsense causality, synthesizing insights from over 200 representative articles. Our work aims to provide a systematic overview, update scholars on recent advancements, provide a pragmatic guide for beginners, and highlight promising future research directions in this vital field.
- Abstract(参考訳): 常識の因果関係を理解することは、人間にとってユニークな知性である。
現実世界の原則をよりよく理解し、因果関係の意思決定プロセスに役立ちます。
例えば、コモンセンスの因果関係は、被告の行為が原告の法的責任決定における損失を引き起こすかどうかを判断するために重要である。
その重要性にもかかわらず、このトピックの体系的な探索は特に欠落している。
我々の総合的な調査は、分類学、ベンチマーク、取得方法、質的推論、コモンセンス因果関係の定量的測定に焦点をあて、200以上の代表記事から洞察を合成することで、このギャップを埋める。
本研究の目的は、体系的な概要の提供、最近の進歩に関する学者の更新、初心者のための実践的なガイドの提供、そしてこの重要な分野における将来的な研究の方向性を明らかにすることである。
関連論文リスト
- Emergence and Causality in Complex Systems: A Survey on Causal Emergence
and Related Quantitative Studies [12.78006421209864]
因果発生理論は出現を定量化するために因果関係の尺度を用いる。
因果の出現を定量化し、データを識別する。
因果表現学習,因果モデル抽象化,世界モデルに基づく強化学習によって,因果表現の出現を識別するアーキテクチャが共有されることを強調した。
論文 参考訳(メタデータ) (2023-12-28T04:20:46Z) - Towards CausalGPT: A Multi-Agent Approach for Faithful Knowledge Reasoning via Promoting Causal Consistency in LLMs [60.244412212130264]
Causal-Consistency Chain-of-Thoughtは、基礎モデルの忠実さと因果性を強化するために、マルチエージェントコラボレーションを活用する。
我々のフレームワークは、広範囲かつ包括的な評価を通じて、最先端の手法よりも大きな優位性を示す。
論文 参考訳(メタデータ) (2023-08-23T04:59:21Z) - Causal Fairness Analysis [68.12191782657437]
意思決定設定における公平性の問題を理解し、モデル化し、潜在的に解決するためのフレームワークを導入します。
我々のアプローチの主な洞察は、観測データに存在する格差の定量化と、基礎となる、しばしば観測されていない、因果的なメカニズムの収集を結びつけることである。
本研究は,文献中の異なる基準間の関係を整理し,説明するための最初の体系的試みであるフェアネスマップにおいて,本研究の成果を左右するものである。
論文 参考訳(メタデータ) (2022-07-23T01:06:34Z) - On the Need and Applicability of Causality for Fair Machine Learning [0.0]
我々は、因果性は自動決定の公平性を評価する上で不可欠であると主張する。
非因果予測の社会的影響と因果的主張に依存する法的反差別過程を指摘する。
論文 参考訳(メタデータ) (2022-07-08T10:37:22Z) - Causal Discovery for Fairness [3.3861246056563616]
因果的発見アプローチの違いが因果的モデルにどのように影響するか,因果的モデル間の微妙な差異が公平さ/差別的結論にどのように影響するかを示す。
本研究の主な目的は,因果関係を用いて公平に対処する因果発見ステップの重要性を明らかにすることである。
論文 参考訳(メタデータ) (2022-06-14T08:40:40Z) - Causal Inference Principles for Reasoning about Commonsense Causality [93.19149325083968]
コモンセンス因果推論(Commonsense causality reasoning)は、平均的な人によって妥当と見なされる自然言語記述における妥当な原因と影響を特定することを目的としている。
既存の作業は通常、深い言語モデルに全面的に依存しており、共起を混同する可能性がある。
古典的因果原理に触発され,我々はCCRの中心的問題を明確にし,観察研究と自然言語における人間の対象間の類似性を引き出す。
本稿では,時間信号をインシデント・インシデント・インシデント・インシデント・インシデントとして活用する新しいフレームワークであるROCKをReason O(A)bout Commonsense K(C)ausalityに提案する。
論文 参考訳(メタデータ) (2022-01-31T06:12:39Z) - Everything Has a Cause: Leveraging Causal Inference in Legal Text
Analysis [62.44432226563088]
因果推論は変数間の因果関係を捉えるプロセスである。
本論文では,事実記述から因果グラフを構築するための新たなグラフベース因果推論フレームワークを提案する。
GCIに含まれる因果知識を強力なニューラルネットワークに効果的に注入することで、パフォーマンスと解釈性が向上します。
論文 参考訳(メタデータ) (2021-04-19T16:13:10Z) - Towards Causal Representation Learning [96.110881654479]
機械学習とグラフィカル因果関係の2つの分野が生まれ、別々に発展した。
現在、他分野の進歩の恩恵を受けるために、クロスポリン化と両方の分野への関心が高まっている。
論文 参考訳(メタデータ) (2021-02-22T15:26:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。