LiveBench: A Challenging, Contamination-Free LLM Benchmark
- URL: http://arxiv.org/abs/2406.19314v1
- Date: Thu, 27 Jun 2024 16:47:42 GMT
- Title: LiveBench: A Challenging, Contamination-Free LLM Benchmark
- Authors: Colin White, Samuel Dooley, Manley Roberts, Arka Pal, Ben Feuer, Siddhartha Jain, Ravid Shwartz-Ziv, Neel Jain, Khalid Saifullah, Siddartha Naidu, Chinmay Hegde, Yann LeCun, Tom Goldstein, Willie Neiswanger, Micah Goldblum,
- Abstract summary: We release LiveBench, the first benchmark that contains frequently-updated questions from recent information sources.
We evaluate many prominent closed-source models, as well as dozens of open-source models ranging from 0.5B to 110B in size.
Questions will be added and updated on a monthly basis, and we will release new tasks and harder versions of tasks over time.
- Score: 101.21578097087699
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Test set contamination, wherein test data from a benchmark ends up in a newer model's training set, is a well-documented obstacle for fair LLM evaluation and can quickly render benchmarks obsolete. To mitigate this, many recent benchmarks crowdsource new prompts and evaluations from human or LLM judges; however, these can introduce significant biases, and break down when scoring hard questions. In this work, we introduce a new benchmark for LLMs designed to be immune to both test set contamination and the pitfalls of LLM judging and human crowdsourcing. We release LiveBench, the first benchmark that (1) contains frequently-updated questions from recent information sources, (2) scores answers automatically according to objective ground-truth values, and (3) contains a wide variety of challenging tasks, spanning math, coding, reasoning, language, instruction following, and data analysis. To achieve this, LiveBench contains questions that are based on recently-released math competitions, arXiv papers, news articles, and datasets, and it contains harder, contamination-free versions of tasks from previous benchmarks such as Big-Bench Hard, AMPS, and IFEval. We evaluate many prominent closed-source models, as well as dozens of open-source models ranging from 0.5B to 110B in size. LiveBench is difficult, with top models achieving below 65% accuracy. We release all questions, code, and model answers. Questions will be added and updated on a monthly basis, and we will release new tasks and harder versions of tasks over time so that LiveBench can distinguish between the capabilities of LLMs as they improve in the future. We welcome community engagement and collaboration for expanding the benchmark tasks and models.
Related papers
- MathHay: An Automated Benchmark for Long-Context Mathematical Reasoning in LLMs [61.74749961334557]
MathHay is an automated benchmark designed to assess the long-context mathematical reasoning capabilities of LLMs.
We conduct extensive experiments on MathHay to assess the long-context mathematical reasoning abilities of eight top-performing models.
arXiv Detail & Related papers (2024-10-07T02:30:07Z) - Training on the Benchmark Is Not All You Need [52.01920740114261]
We propose a simple and effective data leakage detection method based on the contents of multiple-choice options.
Our method is able to work under black-box conditions without access to model training data or weights.
We evaluate the degree of data leakage of 31 mainstream open-source LLMs on four benchmark datasets.
arXiv Detail & Related papers (2024-09-03T11:09:44Z) - Mathador-LM: A Dynamic Benchmark for Mathematical Reasoning on Large Language Models [34.814875040792344]
We introduce Mathador-LM, a new benchmark for evaluating the mathematical reasoning on large language models (LLMs)
Mathador-LM is inspired by the Mathador game, where the objective is to reach a target number using basic arithmetic operations on a given set of base numbers.
We show that, across leading LLMs, we obtain stable average performance while generating benchmark instances emphdynamically, following a target difficulty level.
arXiv Detail & Related papers (2024-06-18T13:02:12Z) - MixEval: Deriving Wisdom of the Crowd from LLM Benchmark Mixtures [57.886592207948844]
We propose MixEval, a new paradigm for establishing efficient, gold-standard evaluation by strategically mixing off-the-shelf benchmarks.
It bridges (1) comprehensive and well-distributed real-world user queries and (2) efficient and fairly-graded ground-truth-based benchmarks, by matching queries mined from the web with similar queries from existing benchmarks.
arXiv Detail & Related papers (2024-06-03T05:47:05Z) - Are We on the Right Way for Evaluating Large Vision-Language Models? [92.5761176224556]
Large vision-language models (LVLMs) have recently achieved rapid progress, sparking numerous studies to evaluate their multi-modal capabilities.
We identify two primary issues: Visual content is unnecessary for many samples and intentional data leakage exists.
We present MMStar, an elite vision-indispensable multi-modal benchmark comprising 1,500 samples meticulously selected by humans.
arXiv Detail & Related papers (2024-03-29T17:59:34Z) - Investigating Data Contamination in Modern Benchmarks for Large Language Models [27.479260572913724]
Recent observations have underscored a disparity between the inflated benchmark scores and the actual performance of LLMs.
We study data contamination by proposing two methods tailored for both open-source and proprietary LLMs.
We find that certain commercial LLMs could surprisingly guess the missing option in various test sets.
arXiv Detail & Related papers (2023-11-16T11:03:04Z) - LLMs as Factual Reasoners: Insights from Existing Benchmarks and Beyond [135.8013388183257]
We propose a new protocol for inconsistency detection benchmark creation and implement it in a 10-domain benchmark called SummEdits.
Most LLMs struggle on SummEdits, with performance close to random chance.
The best-performing model, GPT-4, is still 8% below estimated human performance.
arXiv Detail & Related papers (2023-05-23T21:50:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.