LiverUSRecon: Automatic 3D Reconstruction and Volumetry of the Liver with a Few Partial Ultrasound Scans
- URL: http://arxiv.org/abs/2406.19336v3
- Date: Wed, 25 Sep 2024 10:09:03 GMT
- Title: LiverUSRecon: Automatic 3D Reconstruction and Volumetry of the Liver with a Few Partial Ultrasound Scans
- Authors: Kaushalya Sivayogaraj, Sahan T. Guruge, Udari Liyanage, Jeevani Udupihille, Saroj Jayasinghe, Gerard Fernando, Ranga Rodrigo, M. Rukshani Liyanaarachchi,
- Abstract summary: Liver volumetry using ultrasound (US) scans is challenging due to the inherent noisiness in US scans, blurry boundaries, and partial liver visibility.
We address these challenges by using the segmentation masks of a few incomplete sagittal-plane US scans of the liver in conjunction with a statistical shape model (SSM) built using a set of CT scans of the liver.
The resulting 3D liver reconstruction is accurate and leads to automatic liver volume calculation.
- Score: 1.2009760098637572
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: 3D reconstruction of the liver for volumetry is important for qualitative analysis and disease diagnosis. Liver volumetry using ultrasound (US) scans, although advantageous due to less acquisition time and safety, is challenging due to the inherent noisiness in US scans, blurry boundaries, and partial liver visibility. We address these challenges by using the segmentation masks of a few incomplete sagittal-plane US scans of the liver in conjunction with a statistical shape model (SSM) built using a set of CT scans of the liver. We compute the shape parameters needed to warp this canonical SSM to fit the US scans through a parametric regression network. The resulting 3D liver reconstruction is accurate and leads to automatic liver volume calculation. We evaluate the accuracy of the estimated liver volumes with respect to CT segmentation volumes using RMSE. Our volume computation is statistically much closer to the volume estimated using CT scans than the volume computed using Childs' method by radiologists: p-value of 0.094 (>0.05) says that there is no significant difference between CT segmentation volumes and ours in contrast to Childs' method. We validate our method using investigations (ablation studies) on the US image resolution, the number of CT scans used for SSM, the number of principal components, and the number of input US scans. To the best of our knowledge, this is the first automatic liver volumetry system using a few incomplete US scans given a set of CT scans of livers for SSM.
Related papers
- YNetr: Dual-Encoder architecture on Plain Scan Liver Tumors (PSLT) [11.779888288866577]
Liver tumors are abnormal growths in the liver that can be benign or malignant.
There is no dataset for plain scan segmentation of liver tumors.
We propose Plain Scan Liver Tumors(PSLT) and YNetr.
arXiv Detail & Related papers (2024-03-30T11:41:19Z) - Weakly-Supervised Detection of Bone Lesions in CT [48.34559062736031]
The skeletal region is one of the common sites of metastatic spread of cancer in the breast and prostate.
We developed a pipeline to detect bone lesions in CT volumes via a proxy segmentation task.
Our method detected bone lesions in CT with a precision of 96.7% and recall of 47.3% despite the use of incomplete and partial training data.
arXiv Detail & Related papers (2024-01-31T21:05:34Z) - Tissue Segmentation of Thick-Slice Fetal Brain MR Scans with Guidance
from High-Quality Isotropic Volumes [52.242103848335354]
We propose a novel Cycle-Consistent Domain Adaptation Network (C2DA-Net) to efficiently transfer the knowledge learned from high-quality isotropic volumes for accurate tissue segmentation of thick-slice scans.
Our C2DA-Net can fully utilize a small set of annotated isotropic volumes to guide tissue segmentation on unannotated thick-slice scans.
arXiv Detail & Related papers (2023-08-13T12:51:15Z) - Moving from 2D to 3D: volumetric medical image classification for rectal
cancer staging [62.346649719614]
preoperative discrimination between T2 and T3 stages is arguably both the most challenging and clinically significant task for rectal cancer treatment.
We present a volumetric convolutional neural network to accurately discriminate T2 from T3 stage rectal cancer with rectal MR volumes.
arXiv Detail & Related papers (2022-09-13T07:10:14Z) - Efficient liver segmentation with 3D CNN using computed tomography scans [0.0]
Liver diseases due to liver tumors are one of the most common reasons around the globe.
Many imaging modalities can be used as aiding tools to detect liver tumors.
This paper proposed an efficient automatic liver segmentation framework to detect and segment the liver out of CT abdomen scans.
arXiv Detail & Related papers (2022-08-28T19:02:39Z) - A unified 3D framework for Organs at Risk Localization and Segmentation
for Radiation Therapy Planning [56.52933974838905]
Current medical workflow requires manual delineation of organs-at-risk (OAR)
In this work, we aim to introduce a unified 3D pipeline for OAR localization-segmentation.
Our proposed framework fully enables the exploitation of 3D context information inherent in medical imaging.
arXiv Detail & Related papers (2022-03-01T17:08:41Z) - Self-Supervised Multi-Modal Alignment for Whole Body Medical Imaging [70.52819168140113]
We use a dataset of over 20,000 subjects from the UK Biobank with both whole body Dixon technique magnetic resonance (MR) scans and also dual-energy x-ray absorptiometry (DXA) scans.
We introduce a multi-modal image-matching contrastive framework, that is able to learn to match different-modality scans of the same subject with high accuracy.
Without any adaption, we show that the correspondences learnt during this contrastive training step can be used to perform automatic cross-modal scan registration.
arXiv Detail & Related papers (2021-07-14T12:35:05Z) - Context-aware PolyUNet for Liver and Lesion Segmentation from Abdominal
CT Images [2.5576691384612413]
We propose a novel context-aware PolyUNet for accurate liver and lesion segmentation.
It jointly explores structural diversity and consecutive t-adjacent slices to enrich feature expressive power and spatial contextual information.
Our method achieved very competitive performance at the MICCAI 2017 Liver Tumor (LiTS) Challenge.
arXiv Detail & Related papers (2021-06-21T18:01:04Z) - Multi-Slice Low-Rank Tensor Decomposition Based Multi-Atlas
Segmentation: Application to Automatic Pathological Liver CT Segmentation [4.262342157729123]
Liver segmentation from abdominal CT images is an essential step for liver cancer computer-aided diagnosis and surgical planning.
Currently, the accuracy and robustness of existing liver segmentation methods cannot meet the requirements of clinical applications.
We propose a novel low-rank tensor decomposition (LRTD) based multi-atlas segmentation (MAS) framework that achieves accurate and robust pathological liver segmentation of CT images.
arXiv Detail & Related papers (2021-02-24T04:09:39Z) - Deep Reinforcement Learning for Organ Localization in CT [59.23083161858951]
We propose a deep reinforcement learning approach for organ localization in CT.
In this work, an artificial agent is actively self-taught to localize organs in CT by learning from its asserts and mistakes.
Our method can use as a plug-and-play module for localizing any organ of interest.
arXiv Detail & Related papers (2020-05-11T10:06:13Z) - Automatic segmentation and determining radiodensity of the liver in a
large-scale CT database [0.0]
The technique can be used to process CT images obtained in various patient positions in a wide range of exposition parameters.
It is capable of dealing with low dose CT scans in real large-scale medical database with over 1 million of studies.
arXiv Detail & Related papers (2019-12-31T12:41:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.