論文の概要: A comment on comparing optimization on D-Wave and IBM quantum processors
- arxiv url: http://arxiv.org/abs/2406.19351v1
- Date: Thu, 27 Jun 2024 17:30:16 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-28 13:18:46.376877
- Title: A comment on comparing optimization on D-Wave and IBM quantum processors
- Title(参考訳): D-WaveとIBM量子プロセッサの最適化比較に関するコメント
- Authors: Catherine C. McGeoch, Kevin Chern, Pau Farré, Andrew K. King,
- Abstract要約: 最近の研究は、Q-CTRLによって設計された反復型ハイブリッド量子変分最適化アルゴリズムを提示した。
本比較では, 主要な方法論的問題を示す。
結果は、オープンソースコードとD-Wave量子アニールへの無料トライアルアクセスを使って再現することができる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent work [Sachdeva et al.] presented an iterative hybrid quantum variational optimization algorithm designed by Q-CTRL and executed on IBM gate-based quantum processing units (QPUs), claiming a significant performance advantage against a D-Wave quantum annealer. Here we point out major methodological problems with this comparison. Using a simple unoptimized workflow for quantum annealing, we show success probabilities multiple orders of magnitude higher than those reported by [Sachdeva et al.]. These results, which can be reproduced using open-source code and free trial access to a D-Wave quantum annealer, contradict Q-CTRL's claims of superior performance. We also provide a direct comparison between quantum annealing and a recent demonstration of digitized quantum annealing on an IBM processor, showing that analog quantum annealing on a D-Wave QPU reaches far lower energies than digitized quantum annealing on an IBM QPU.
- Abstract(参考訳): 最近の研究(Sachdeva et al ]では、Q-CTRLによって設計され、IBMゲートベースの量子処理ユニット(QPU)上で実行される反復型ハイブリッド量子変分最適化アルゴリズムが提案されている。
ここでは,本比較における主要な方法論的問題について述べる。
単純な最適化されていないワークフローを用いて、[Sachdeva et al ] によって報告されたものよりも、成功確率が桁違いに高いことを示す。
これらの結果は、オープンソースコードとD-Wave量子アニールへの無料トライアルアクセスを使って再現できるが、Q-CTRLの優れた性能の主張とは矛盾する。
また、D-Wave QPU上のアナログ量子アニールは、IBM QPU上のデジタル量子アニールよりもはるかに低いエネルギーに達することを示す。
関連論文リスト
- Unlocking Quantum Optimization: A Use Case Study on NISQ Systems [0.0]
本稿では、電気自動車の充電スケジュールを最適化する分野における産業関連ユースケースと、トラック走行経路の最適化に関するユースケースについて考察する。
我々の中心的なコントリビューションは、IBMのゲートベース量子コンピュータの異なるプロセッサとD-Waveの量子アニール上で実行されるこれらのユースケースから導かれる系統的な一連の例である。
論文 参考訳(メタデータ) (2024-04-10T17:08:07Z) - Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
量子コンピューティングは、アルゴリズムを設計する新しい方法の基礎となる。
どの場の量子スピードアップが達成できるかという新たな課題が生じる。
量子サブルーチンの設計は、従来のサブルーチンよりも効率的で、新しい強力な量子アルゴリズムに固い柱を向ける。
論文 参考訳(メタデータ) (2024-02-26T09:32:07Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEAはノイズ適応型量子回路のインタイムスパース探索である。
1)トレーニング中の暗黙の回路容量と(2)雑音の頑健さの2つの主要な目標を達成することを目的としている。
提案手法は, 量子ゲート数の半減と回路実行の2倍の時間節約で, 最先端の計算結果を確立する。
論文 参考訳(メタデータ) (2024-01-10T22:33:00Z) - Quantum Computing for Solid Mechanics and Structural Engineering -- a
Demonstration with Variational Quantum Eigensolver [3.8061090528695534]
変分量子アルゴリズムは、コスト関数を効率的に最適化するために重ね合わせと絡み合いの特徴を利用する。
我々は,IBM Qiskit プラットフォーム上で 5-qubit および 7-qubit 量子プロセッサ上での数値処理を実装し,実演する。
論文 参考訳(メタデータ) (2023-08-28T17:52:47Z) - Enhancing Quantum Annealing in Digital-Analog Quantum Computing [0.0]
デジタルアナログ量子コンピューティング(DAQC)は、実用的な量子コンピュータを構築する際の課題に対処するための有望なアプローチを提供する。
本稿では,量子アニールの性能向上を目的としたアルゴリズムを提案する。
本研究では、量子回路を用いた量子データ処理が、量子情報を捨てる古典的なデータ処理より優れていることを示す。
論文 参考訳(メタデータ) (2023-06-03T09:16:15Z) - Quantum Annealing for Single Image Super-Resolution [86.69338893753886]
単一画像超解像(SISR)問題を解くために,量子コンピューティングに基づくアルゴリズムを提案する。
提案したAQCアルゴリズムは、SISRの精度を維持しつつ、古典的なアナログよりも向上したスピードアップを実現する。
論文 参考訳(メタデータ) (2023-04-18T11:57:15Z) - Quantum Imitation Learning [74.15588381240795]
本稿では、量子優位性を利用してILを高速化する量子模倣学習(QIL)を提案する。
量子行動クローニング(Q-BC)と量子生成逆模倣学習(Q-GAIL)という2つのQILアルゴリズムを開発した。
実験結果から,Q-BCとQ-GAILの両者が,従来のものと同等の性能を達成できることが判明した。
論文 参考訳(メタデータ) (2023-04-04T12:47:35Z) - Anticipative measurements in hybrid quantum-classical computation [68.8204255655161]
量子計算を古典的な結果によって補う手法を提案する。
予測の利点を生かして、新しいタイプの量子測度がもたらされる。
予測量子測定では、古典計算と量子計算の結果の組み合わせは最後にのみ起こる。
論文 参考訳(メタデータ) (2022-09-12T15:47:44Z) - Quantum Neuron with Separable-State Encoding [0.0]
現在利用可能な量子プロセッサにおいて、高度な量子ニューロンモデルを大規模にテストすることは、まだ不可能である。
マルチキュービットゲート数を削減した量子パーセプトロン(QP)モデルを提案する。
シミュレーション量子コンピュータにおいて,QPの量子ビットバージョンをいくつか実装することにより,提案モデルの性能を実証する。
論文 参考訳(メタデータ) (2022-02-16T19:26:23Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
本稿では、QAS(Quantum Architecture Search)と呼ばれるリソースと実行時の効率的なスキームを提案する。
QASは、よりノイズの多い量子ゲートを追加することで得られる利点と副作用のバランスをとるために、自動的にほぼ最適アンサッツを求める。
数値シミュレータと実量子ハードウェアの両方に、IBMクラウドを介してQASを実装し、データ分類と量子化学タスクを実現する。
論文 参考訳(メタデータ) (2020-10-20T12:06:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。