論文の概要: Stock Volume Forecasting with Advanced Information by Conditional Variational Auto-Encoder
- arxiv url: http://arxiv.org/abs/2406.19414v1
- Date: Wed, 19 Jun 2024 13:13:06 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-07 13:43:41.773718
- Title: Stock Volume Forecasting with Advanced Information by Conditional Variational Auto-Encoder
- Title(参考訳): 条件付き変分自動エンコーダによる高度な情報を用いたストックボリューム予測
- Authors: Parley R Yang, Alexander Y Shestopaloff,
- Abstract要約: 本研究では,短時間・長期の予測作業において,日当たりのストックボリューム時系列の予測を改善するために,条件変動(CVAE)を用いることを実証する。
CVAEは非線形時系列をサンプル外予測として生成し、精度が向上し、実際のデータとの相関関係がより緊密になる。
- 参考スコア(独自算出の注目度): 49.97673761305336
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We demonstrate the use of Conditional Variational Encoder (CVAE) to improve the forecasts of daily stock volume time series in both short and long term forecasting tasks, with the use of advanced information of input variables such as rebalancing dates. CVAE generates non-linear time series as out-of-sample forecasts, which have better accuracy and closer fit of correlation to the actual data, compared to traditional linear models. These generative forecasts can also be used for scenario generation, which aids interpretation. We further discuss correlations in non-stationary time series and other potential extensions from the CVAE forecasts.
- Abstract(参考訳): 本研究では, 日時などの入力変数の高度な情報を用いて, 短時間・長期の予測タスクにおいて, 日々のストックボリューム時系列の予測を改善するために, CVAE(Conditional Variational Encoder) を用いることを実証する。
CVAEは、従来の線形モデルと比較して、実際のデータとの相関の精度と密接な適合性を有する非線形時系列をサンプル外予測として生成する。
これらの生成予測は、解釈を助けるシナリオ生成にも使用することができる。
さらに,非定常時系列とCVAE予測からの潜在的な拡張の相関について考察する。
関連論文リスト
- Timer-XL: Long-Context Transformers for Unified Time Series Forecasting [67.83502953961505]
我々は時系列の統一予測のための生成変換器Timer-XLを提案する。
Timer-XLは、統一されたアプローチにより、挑戦的な予測ベンチマークで最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2024-10-07T07:27:39Z) - Learning Graph Structures and Uncertainty for Accurate and Calibrated Time-series Forecasting [65.40983982856056]
本稿では,時系列間の相関を利用して時系列間の構造を学習し,精度の高い正確な予測を行うSTOICを紹介する。
幅広いベンチマークデータセットに対して、STOICは16%の精度とキャリブレーションのよい予測を提供する。
論文 参考訳(メタデータ) (2024-07-02T20:14:32Z) - Probing the Robustness of Time-series Forecasting Models with
CounterfacTS [1.823020744088554]
我々は,時系列予測タスクにおけるディープラーニングモデルの堅牢性を調査するツールであるCounterfacTSを提示し,公開する。
CounterfacTSにはユーザフレンドリーなインターフェースがあり、時系列データとその予測を視覚化、比較、定量化することができる。
論文 参考訳(メタデータ) (2024-03-06T07:34:47Z) - Enhancing Mean-Reverting Time Series Prediction with Gaussian Processes:
Functional and Augmented Data Structures in Financial Forecasting [0.0]
本稿では,ガウス過程(GP)を基礎構造を持つ平均回帰時系列の予測に適用する。
GPは、平均予測だけでなく、将来の軌道上の確率分布全体を予測する可能性を提供する。
これは、不正なボラティリティ評価が資本損失につながる場合、正確な予測だけでは十分でない金融状況において特に有益である。
論文 参考訳(メタデータ) (2024-02-23T06:09:45Z) - Unified Training of Universal Time Series Forecasting Transformers [104.56318980466742]
マスク型ユニバーサル時系列予測変換器(モイライ)について述べる。
Moiraiは、新たに導入された大規模オープンタイムシリーズアーカイブ(LOTSA)で訓練されており、9つのドメインで27億以上の観測が行われた。
Moiraiは、フルショットモデルと比較してゼロショットの予測器として、競争力や優れたパフォーマンスを達成する。
論文 参考訳(メタデータ) (2024-02-04T20:00:45Z) - Generative Time Series Forecasting with Diffusion, Denoise, and
Disentanglement [51.55157852647306]
時系列予測は多くのアプリケーションにおいて非常に重要な課題である。
実世界の時系列データが短時間に記録されることが一般的であり、これはディープモデルと限られたノイズのある時系列との間に大きなギャップをもたらす。
本稿では,生成モデルを用いた時系列予測問題に対処し,拡散,雑音,ゆがみを備えた双方向変分自動エンコーダを提案する。
論文 参考訳(メタデータ) (2023-01-08T12:20:46Z) - DeepVol: Volatility Forecasting from High-Frequency Data with Dilated Causal Convolutions [53.37679435230207]
本稿では,Dilated Causal Convolutionsに基づくDeepVolモデルを提案する。
実験結果から,提案手法は高頻度データからグローバルな特徴を効果的に学習できることが示唆された。
論文 参考訳(メタデータ) (2022-09-23T16:13:47Z) - CLMFormer: Mitigating Data Redundancy to Revitalize Transformer-based
Long-Term Time Series Forecasting System [46.39662315849883]
時系列予測(LTSF)は,様々な応用において重要な役割を担っている。
既存のTransformerベースのモデルであるFedformerやInformerは、いくつかのエポックの後、検証セット上で最高のパフォーマンスを達成することが多い。
本稿では,カリキュラム学習とメモリ駆動デコーダの導入により,この問題に対処する新しい手法を提案する。
論文 参考訳(メタデータ) (2022-07-16T04:05:15Z) - A Variational Autoencoder for Heterogeneous Temporal and Longitudinal
Data [0.3749861135832073]
近年,経時的および経時的データを処理可能なVAEの拡張は,医療,行動モデリング,予測保守に応用されている。
本研究では,既存の時間的および縦的VAEをヘテロジニアスデータに拡張するヘテロジニアス縦型VAE(HL-VAE)を提案する。
HL-VAEは高次元データセットに対する効率的な推論を提供し、連続、カウント、カテゴリー、順序データのための可能性モデルを含む。
論文 参考訳(メタデータ) (2022-04-20T10:18:39Z) - Self-Adaptive Forecasting for Improved Deep Learning on Non-Stationary
Time-Series [20.958959332978726]
SAFは、バックキャストに基づく予測に先立って自己適応段階を統合する」
提案手法は,符号化された表現を進化する分布に効率よく適応させることにより,より優れた一般化を実現する。
時系列データが医療や金融などの非定常性で知られる領域における合成および実世界のデータセットについて、SAFの顕著なメリットを実証する。
論文 参考訳(メタデータ) (2022-02-04T21:54:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。