Stock Volume Forecasting with Advanced Information by Conditional Variational Auto-Encoder
- URL: http://arxiv.org/abs/2406.19414v1
- Date: Wed, 19 Jun 2024 13:13:06 GMT
- Title: Stock Volume Forecasting with Advanced Information by Conditional Variational Auto-Encoder
- Authors: Parley R Yang, Alexander Y Shestopaloff,
- Abstract summary: We demonstrate the use of Conditional Variational (CVAE) to improve the forecasts of daily stock volume time series in both short and long term forecasting tasks.
CVAE generates non-linear time series as out-of-sample forecasts, which have better accuracy and closer fit of correlation to the actual data.
- Score: 49.97673761305336
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We demonstrate the use of Conditional Variational Encoder (CVAE) to improve the forecasts of daily stock volume time series in both short and long term forecasting tasks, with the use of advanced information of input variables such as rebalancing dates. CVAE generates non-linear time series as out-of-sample forecasts, which have better accuracy and closer fit of correlation to the actual data, compared to traditional linear models. These generative forecasts can also be used for scenario generation, which aids interpretation. We further discuss correlations in non-stationary time series and other potential extensions from the CVAE forecasts.
Related papers
- Timer-XL: Long-Context Transformers for Unified Time Series Forecasting [67.83502953961505]
We present Timer-XL, a generative Transformer for unified time series forecasting.
Timer-XL achieves state-of-the-art performance across challenging forecasting benchmarks through a unified approach.
arXiv Detail & Related papers (2024-10-07T07:27:39Z) - Learning Graph Structures and Uncertainty for Accurate and Calibrated Time-series Forecasting [65.40983982856056]
We introduce STOIC, that leverages correlations between time-series to learn underlying structure between time-series and to provide well-calibrated and accurate forecasts.
Over a wide-range of benchmark datasets STOIC provides 16% more accurate and better-calibrated forecasts.
arXiv Detail & Related papers (2024-07-02T20:14:32Z) - Probing the Robustness of Time-series Forecasting Models with
CounterfacTS [1.823020744088554]
We present and publicly release CounterfacTS, a tool to probe the robustness of deep learning models in time-series forecasting tasks.
CounterfacTS has a user-friendly interface that allows the user to visualize, compare and quantify time series data and their forecasts.
arXiv Detail & Related papers (2024-03-06T07:34:47Z) - Enhancing Mean-Reverting Time Series Prediction with Gaussian Processes:
Functional and Augmented Data Structures in Financial Forecasting [0.0]
We explore the application of Gaussian Processes (GPs) for predicting mean-reverting time series with an underlying structure.
GPs offer the potential to forecast not just the average prediction but the entire probability distribution over a future trajectory.
This is particularly beneficial in financial contexts, where accurate predictions alone may not suffice if incorrect volatility assessments lead to capital losses.
arXiv Detail & Related papers (2024-02-23T06:09:45Z) - Unified Training of Universal Time Series Forecasting Transformers [104.56318980466742]
We present a Masked-based Universal Time Series Forecasting Transformer (Moirai)
Moirai is trained on our newly introduced Large-scale Open Time Series Archive (LOTSA) featuring over 27B observations across nine domains.
Moirai achieves competitive or superior performance as a zero-shot forecaster when compared to full-shot models.
arXiv Detail & Related papers (2024-02-04T20:00:45Z) - Generative Time Series Forecasting with Diffusion, Denoise, and
Disentanglement [51.55157852647306]
Time series forecasting has been a widely explored task of great importance in many applications.
It is common that real-world time series data are recorded in a short time period, which results in a big gap between the deep model and the limited and noisy time series.
We propose to address the time series forecasting problem with generative modeling and propose a bidirectional variational auto-encoder equipped with diffusion, denoise, and disentanglement.
arXiv Detail & Related papers (2023-01-08T12:20:46Z) - DeepVol: Volatility Forecasting from High-Frequency Data with Dilated Causal Convolutions [53.37679435230207]
We propose DeepVol, a model based on Dilated Causal Convolutions that uses high-frequency data to forecast day-ahead volatility.
Our empirical results suggest that the proposed deep learning-based approach effectively learns global features from high-frequency data.
arXiv Detail & Related papers (2022-09-23T16:13:47Z) - CLMFormer: Mitigating Data Redundancy to Revitalize Transformer-based
Long-Term Time Series Forecasting System [46.39662315849883]
Long-term time-series forecasting (LTSF) plays a crucial role in various practical applications.
Existing Transformer-based models, such as Fedformer and Informer, often achieve their best performances on validation sets after just a few epochs.
We propose a novel approach to address this issue by employing curriculum learning and introducing a memory-driven decoder.
arXiv Detail & Related papers (2022-07-16T04:05:15Z) - A Variational Autoencoder for Heterogeneous Temporal and Longitudinal
Data [0.3749861135832073]
Recently proposed extensions to VAEs that can handle temporal and longitudinal data have applications in healthcare, behavioural modelling, and predictive maintenance.
We propose the heterogeneous longitudinal VAE (HL-VAE) that extends the existing temporal and longitudinal VAEs to heterogeneous data.
HL-VAE provides efficient inference for high-dimensional datasets and includes likelihood models for continuous, count, categorical, and ordinal data.
arXiv Detail & Related papers (2022-04-20T10:18:39Z) - Self-Adaptive Forecasting for Improved Deep Learning on Non-Stationary
Time-Series [20.958959332978726]
SAF integrates a self-adaptation stage prior to forecasting based on backcasting'
Our method enables efficient adaptation of encoded representations to evolving distributions, leading to superior generalization.
On synthetic and real-world datasets in domains where time-series data are known to be notoriously non-stationary, such as healthcare and finance, we demonstrate a significant benefit of SAF.
arXiv Detail & Related papers (2022-02-04T21:54:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.