Future-Guided Learning: A Predictive Approach To Enhance Time-Series Forecasting
- URL: http://arxiv.org/abs/2410.15217v2
- Date: Fri, 17 Jan 2025 20:24:26 GMT
- Title: Future-Guided Learning: A Predictive Approach To Enhance Time-Series Forecasting
- Authors: Skye Gunasekaran, Assel Kembay, Hugo Ladret, Rui-Jie Zhu, Laurent Perrinet, Omid Kavehei, Jason Eshraghian,
- Abstract summary: We introduce Future-Guided Learning, an approach that enhances time-series event forecasting through a dynamic feedback mechanism inspired by predictive coding.
Our method involves two models: a detection model that analyzes future data to identify critical events and a forecasting model that predicts these events based on current data.
We validate our approach on a variety of tasks, demonstrating a 44.8% increase in AUC-ROC for seizure prediction using EEG data, and a 48.7% reduction in MSE for forecasting in nonlinear dynamical systems.
- Score: 4.866362841501992
- License:
- Abstract: Accurate time-series forecasting is crucial in various scientific and industrial domains, yet deep learning models often struggle to capture long-term dependencies and adapt to data distribution drifts over time. We introduce Future-Guided Learning, an approach that enhances time-series event forecasting through a dynamic feedback mechanism inspired by predictive coding. Our method involves two models: a detection model that analyzes future data to identify critical events and a forecasting model that predicts these events based on current data. When discrepancies occur between the forecasting and detection models, a more significant update is applied to the forecasting model, effectively minimizing surprise and adapting to shifts in the data distribution by aligning its predictions with actual future outcomes. This feedback loop allows the forecasting model to dynamically adjust its parameters, focusing on persistent features despite changes in the data. We validate our approach on a variety of tasks, demonstrating a 44.8% increase in AUC-ROC for seizure prediction using EEG data, and a 48.7% reduction in MSE for forecasting in nonlinear dynamical systems. By incorporating a predictive feedback mechanism adaptable to data drift, Future-Guided Learning advances how deep learning is applied to time-series forecasting. Our code is publicly available at https://github.com/SkyeGunasekaran/FutureGuidedLearning.
Related papers
- Wisdom of the Crowds in Forecasting: Forecast Summarization for Supporting Future Event Prediction [17.021220773165016]
Future Event Prediction (FEP) is an essential activity whose demand and application range across multiple domains.
One forecasting way is to gather and aggregate collective opinions on the future to make predictions as cumulative perspectives carry the potential to help estimating the likelihood of upcoming events.
In this work, we organize the existing research and frameworks that aim to support future event prediction based on crowd wisdom through aggregating individual forecasts.
arXiv Detail & Related papers (2025-02-12T08:35:10Z) - F-FOMAML: GNN-Enhanced Meta-Learning for Peak Period Demand Forecasting with Proxy Data [65.6499834212641]
We formulate the demand prediction as a meta-learning problem and develop the Feature-based First-Order Model-Agnostic Meta-Learning (F-FOMAML) algorithm.
By considering domain similarities through task-specific metadata, our model improved generalization, where the excess risk decreases as the number of training tasks increases.
Compared to existing state-of-the-art models, our method demonstrates a notable improvement in demand prediction accuracy, reducing the Mean Absolute Error by 26.24% on an internal vending machine dataset and by 1.04% on the publicly accessible JD.com dataset.
arXiv Detail & Related papers (2024-06-23T21:28:50Z) - Probing the Robustness of Time-series Forecasting Models with
CounterfacTS [1.823020744088554]
We present and publicly release CounterfacTS, a tool to probe the robustness of deep learning models in time-series forecasting tasks.
CounterfacTS has a user-friendly interface that allows the user to visualize, compare and quantify time series data and their forecasts.
arXiv Detail & Related papers (2024-03-06T07:34:47Z) - Enhancing Mean-Reverting Time Series Prediction with Gaussian Processes:
Functional and Augmented Data Structures in Financial Forecasting [0.0]
We explore the application of Gaussian Processes (GPs) for predicting mean-reverting time series with an underlying structure.
GPs offer the potential to forecast not just the average prediction but the entire probability distribution over a future trajectory.
This is particularly beneficial in financial contexts, where accurate predictions alone may not suffice if incorrect volatility assessments lead to capital losses.
arXiv Detail & Related papers (2024-02-23T06:09:45Z) - FengWu-4DVar: Coupling the Data-driven Weather Forecasting Model with 4D Variational Assimilation [67.20588721130623]
We develop an AI-based cyclic weather forecasting system, FengWu-4DVar.
FengWu-4DVar can incorporate observational data into the data-driven weather forecasting model.
Experiments on the simulated observational dataset demonstrate that FengWu-4DVar is capable of generating reasonable analysis fields.
arXiv Detail & Related papers (2023-12-16T02:07:56Z) - Performative Time-Series Forecasting [71.18553214204978]
We formalize performative time-series forecasting (PeTS) from a machine-learning perspective.
We propose a novel approach, Feature Performative-Shifting (FPS), which leverages the concept of delayed response to anticipate distribution shifts.
We conduct comprehensive experiments using multiple time-series models on COVID-19 and traffic forecasting tasks.
arXiv Detail & Related papers (2023-10-09T18:34:29Z) - DeepVol: Volatility Forecasting from High-Frequency Data with Dilated Causal Convolutions [53.37679435230207]
We propose DeepVol, a model based on Dilated Causal Convolutions that uses high-frequency data to forecast day-ahead volatility.
Our empirical results suggest that the proposed deep learning-based approach effectively learns global features from high-frequency data.
arXiv Detail & Related papers (2022-09-23T16:13:47Z) - Probabilistic AutoRegressive Neural Networks for Accurate Long-range
Forecasting [6.295157260756792]
We introduce the Probabilistic AutoRegressive Neural Networks (PARNN)
PARNN is capable of handling complex time series data exhibiting non-stationarity, nonlinearity, non-seasonality, long-range dependence, and chaotic patterns.
We evaluate the performance of PARNN against standard statistical, machine learning, and deep learning models, including Transformers, NBeats, and DeepAR.
arXiv Detail & Related papers (2022-04-01T17:57:36Z) - Back2Future: Leveraging Backfill Dynamics for Improving Real-time
Predictions in Future [73.03458424369657]
In real-time forecasting in public health, data collection is a non-trivial and demanding task.
'Backfill' phenomenon and its effect on model performance has been barely studied in the prior literature.
We formulate a novel problem and neural framework Back2Future that aims to refine a given model's predictions in real-time.
arXiv Detail & Related papers (2021-06-08T14:48:20Z) - Learning Interpretable Deep State Space Model for Probabilistic Time
Series Forecasting [98.57851612518758]
Probabilistic time series forecasting involves estimating the distribution of future based on its history.
We propose a deep state space model for probabilistic time series forecasting whereby the non-linear emission model and transition model are parameterized by networks.
We show in experiments that our model produces accurate and sharp probabilistic forecasts.
arXiv Detail & Related papers (2021-01-31T06:49:33Z) - Learning Accurate Long-term Dynamics for Model-based Reinforcement
Learning [7.194382512848327]
We propose a new parametrization to supervised learning on state-action data to stably predict at longer horizons.
Our results in simulated and experimental robotic tasks show that our trajectory-based models yield significantly more accurate long term predictions.
arXiv Detail & Related papers (2020-12-16T18:47:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.