Can Large Language Models Generate High-quality Patent Claims?
- URL: http://arxiv.org/abs/2406.19465v2
- Date: Thu, 17 Oct 2024 16:53:12 GMT
- Title: Can Large Language Models Generate High-quality Patent Claims?
- Authors: Lekang Jiang, Caiqi Zhang, Pascal A Scherz, Stephan Goetz,
- Abstract summary: Large language models (LLMs) have shown exceptional performance across various text generation tasks.
This paper constructs a dataset to investigate the performance of current LLMs in patent claim generation.
- Score: 0.7535435234862548
- License:
- Abstract: Large language models (LLMs) have shown exceptional performance across various text generation tasks but remain under-explored in the patent domain, which offers highly structured and precise language. This paper constructs a dataset to investigate the performance of current LLMs in patent claim generation. Our results demonstrate that generating claims based on patent descriptions outperforms previous research relying on abstracts. Interestingly, current patent-specific LLMs perform much worse than state-of-the-art general LLMs, highlighting the necessity for future research on in-domain LLMs. We also find that LLMs can produce high-quality first independent claims, but their performances markedly decrease for subsequent dependent claims. Moreover, fine-tuning can enhance the completeness of inventions' features, conceptual clarity, and feature linkage. Among the tested LLMs, GPT-4 demonstrates the best performance in comprehensive human evaluations by patent experts, with better feature coverage, conceptual clarity, and technical coherence. Despite these capabilities, comprehensive revision and modification are still necessary to pass rigorous patent scrutiny and ensure legal robustness.
Related papers
- Can AI Examine Novelty of Patents?: Novelty Evaluation Based on the Correspondence between Patent Claim and Prior Art [5.655276956391884]
This paper introduces a novel challenge by evaluating the ability of large language models (LLMs) to assess patent novelty.
We present the first dataset specifically designed for novelty evaluation, derived from real patent examination cases.
Our study reveals that while classification models struggle to effectively assess novelty, generative models make predictions with a reasonable level of accuracy.
arXiv Detail & Related papers (2025-02-10T10:09:29Z) - AutoPatent: A Multi-Agent Framework for Automatic Patent Generation [16.862811929856313]
We introduce a novel and practical task known as Draft2Patent, along with its corresponding D2P benchmark, which challenges Large Language Models to generate full-length patents averaging 17K tokens based on initial drafts.
We propose a multi-agent framework called AutoPatent which leverages the LLM-based planner agent, writer agents, and examiner agent with PGTree and RRAG to generate lengthy, intricate, and high-quality complete patent documents.
arXiv Detail & Related papers (2024-12-13T02:27:34Z) - Patent-CR: A Dataset for Patent Claim Revision [0.0]
This paper presents Patent-CR, the first dataset created for the patent claim revision task in English.
It includes both initial patent applications rejected by patent examiners and the final granted versions.
arXiv Detail & Related papers (2024-12-03T16:43:42Z) - Truth or Mirage? Towards End-to-End Factuality Evaluation with LLM-Oasis [78.07225438556203]
We introduce LLM-Oasis, the largest resource for training end-to-end factuality evaluators.
It is constructed by extracting claims from Wikipedia, falsifying a subset of these claims, and generating pairs of factual and unfactual texts.
We then rely on human annotators to both validate the quality of our dataset and to create a gold standard test set for factuality evaluation systems.
arXiv Detail & Related papers (2024-11-29T12:21:15Z) - Q*: Improving Multi-step Reasoning for LLMs with Deliberative Planning [53.6472920229013]
Large Language Models (LLMs) have demonstrated impressive capability in many natural language tasks.
LLMs are prone to produce errors, hallucinations and inconsistent statements when performing multi-step reasoning.
We introduce Q*, a framework for guiding LLMs decoding process with deliberative planning.
arXiv Detail & Related papers (2024-06-20T13:08:09Z) - Potential and Limitations of LLMs in Capturing Structured Semantics: A Case Study on SRL [78.80673954827773]
Large Language Models (LLMs) play a crucial role in capturing structured semantics to enhance language understanding, improve interpretability, and reduce bias.
We propose using Semantic Role Labeling (SRL) as a fundamental task to explore LLMs' ability to extract structured semantics.
We find interesting potential: LLMs can indeed capture semantic structures, and scaling-up doesn't always mirror potential.
We are surprised to discover that significant overlap in the errors is made by both LLMs and untrained humans, accounting for almost 30% of all errors.
arXiv Detail & Related papers (2024-05-10T11:44:05Z) - A Survey on RAG Meeting LLMs: Towards Retrieval-Augmented Large Language Models [71.25225058845324]
Large Language Models (LLMs) have demonstrated revolutionary abilities in language understanding and generation.
Retrieval-Augmented Generation (RAG) can offer reliable and up-to-date external knowledge.
RA-LLMs have emerged to harness external and authoritative knowledge bases, rather than relying on the model's internal knowledge.
arXiv Detail & Related papers (2024-05-10T02:48:45Z) - Natural Language Processing in Patents: A Survey [0.0]
Patents, encapsulating crucial technical and legal information, present a rich domain for natural language processing (NLP) applications.
As NLP technologies evolve, large language models (LLMs) have demonstrated outstanding capabilities in general text processing and generation tasks.
This paper aims to equip NLP researchers with the essential knowledge to navigate this complex domain efficiently.
arXiv Detail & Related papers (2024-03-06T23:17:16Z) - PANDA: Preference Adaptation for Enhancing Domain-Specific Abilities of LLMs [49.32067576992511]
Large language models often fall short of the performance achieved by domain-specific state-of-the-art models.
One potential approach to enhance domain-specific capabilities of LLMs involves fine-tuning them using corresponding datasets.
We propose Preference Adaptation for Enhancing Domain-specific Abilities of LLMs (PANDA)
Our experimental results reveal that PANDA significantly enhances the domain-specific ability of LLMs on text classification and interactive decision tasks.
arXiv Detail & Related papers (2024-02-20T09:02:55Z) - Supervised Knowledge Makes Large Language Models Better In-context Learners [94.89301696512776]
Large Language Models (LLMs) exhibit emerging in-context learning abilities through prompt engineering.
The challenge of improving the generalizability and factuality of LLMs in natural language understanding and question answering remains under-explored.
We propose a framework that enhances the reliability of LLMs as it: 1) generalizes out-of-distribution data, 2) elucidates how LLMs benefit from discriminative models, and 3) minimizes hallucinations in generative tasks.
arXiv Detail & Related papers (2023-12-26T07:24:46Z) - PRISMA-DFLLM: An Extension of PRISMA for Systematic Literature Reviews
using Domain-specific Finetuned Large Language Models [0.0]
This paper proposes an AI-enabled methodological framework that combines the power of Large Language Models (LLMs) with the rigorous reporting guidelines of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)
By finetuning LLMs on domain-specific academic papers that have been selected as a result of a rigorous SLR process, the proposed PRISMA-DFLLM reporting guidelines offer the potential to achieve greater efficiency, reusability and scalability.
arXiv Detail & Related papers (2023-06-15T02:52:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.