論文の概要: Knowledge acquisition for dialogue agents using reinforcement learning on graph representations
- arxiv url: http://arxiv.org/abs/2406.19500v1
- Date: Thu, 27 Jun 2024 19:28:42 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-01 18:41:35.438724
- Title: Knowledge acquisition for dialogue agents using reinforcement learning on graph representations
- Title(参考訳): グラフ表現を用いた強化学習を用いた対話エージェントの知識獲得
- Authors: Selene Baez Santamaria, Shihan Wang, Piek Vossen,
- Abstract要約: 本研究は,初等訓練以上の知識基盤を増強するための人工エージェントを開発する。
エージェントは他のエージェントとの対話に積極的に参加し、戦略的に新しい情報を取得する。
インタラクション中に有効なグラフパターンを選択するために、強化学習を用いてポリシーを学習できることが示される。
- 参考スコア(独自算出の注目度): 2.3851115175441193
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We develop an artificial agent motivated to augment its knowledge base beyond its initial training. The agent actively participates in dialogues with other agents, strategically acquiring new information. The agent models its knowledge as an RDF knowledge graph, integrating new beliefs acquired through conversation. Responses in dialogue are generated by identifying graph patterns around these new integrated beliefs. We show that policies can be learned using reinforcement learning to select effective graph patterns during an interaction, without relying on explicit user feedback. Within this context, our study is a proof of concept for leveraging users as effective sources of information.
- Abstract(参考訳): 本研究は,初等訓練以上の知識基盤を増強するための人工エージェントを開発する。
エージェントは他のエージェントとの対話に積極的に参加し、戦略的に新しい情報を取得する。
エージェントは、その知識をRDF知識グラフとしてモデル化し、会話を通じて獲得した新しい信念を統合する。
対話における応答は、これらの新しい統合された信念に関するグラフパターンを識別することによって生成される。
ユーザからの明示的なフィードバックに頼らずに、強化学習を用いてポリシーを学習し、対話中に効果的なグラフパターンを選択することができることを示す。
本研究は,ユーザを効果的な情報源として活用するための概念実証である。
関連論文リスト
- Knowledge Graphs and Pre-trained Language Models enhanced Representation Learning for Conversational Recommender Systems [58.561904356651276]
本稿では,対話型推薦システムのためのエンティティの意味理解を改善するために,知識強化型エンティティ表現学習(KERL)フレームワークを紹介する。
KERLは知識グラフと事前訓練された言語モデルを使用して、エンティティの意味的理解を改善する。
KERLはレコメンデーションとレスポンス生成の両方のタスクで最先端の結果を達成する。
論文 参考訳(メタデータ) (2023-12-18T06:41:23Z) - A Contextualized Real-Time Multimodal Emotion Recognition for
Conversational Agents using Graph Convolutional Networks in Reinforcement
Learning [0.800062359410795]
強化学習(conER-GRL)を用いたグラフ畳み込みネットワークを用いた文脈的感情認識のための新しいパラダイムを提案する。
会話は、文脈情報の効果的な抽出のために、発話の小さなグループに分割される。
このシステムは、GRU(Gated Recurrent Units)を用いて、これらの発話群からマルチモーダル特徴を抽出する。
論文 参考訳(メタデータ) (2023-10-24T14:31:17Z) - Building Knowledge-Grounded Dialogue Systems with Graph-Based Semantic Modeling [43.0554223015728]
知識基盤対話タスクは、与えられた知識文書から情報を伝える応答を生成することを目的としている。
対話と知識の両方のセマンティック構造をモデル化する新しいグラフ構造であるグラウンドドグラフを提案する。
また,知識接地応答生成を向上するグラウンドドグラフ認識変換器を提案する。
論文 参考訳(メタデータ) (2022-04-27T03:31:46Z) - Towards Large-Scale Interpretable Knowledge Graph Reasoning for Dialogue
Systems [109.16553492049441]
よりスケーラブルで一般化可能な対話システムに知識推論機能を組み込む新しい手法を提案する。
我々の知識を最大限に活用するために、変圧器モデルが微分可能な知識グラフを解析して応答を生成するのは、これが初めてである。
論文 参考訳(メタデータ) (2022-03-20T17:51:49Z) - Retrieval-Free Knowledge-Grounded Dialogue Response Generation with
Adapters [52.725200145600624]
軽量アダプタで事前学習した言語モデルに事前知識を注入し、検索プロセスをバイパスする KnowExpert を提案する。
実験結果から,KnowExpertは検索ベースラインと相容れない性能を示した。
論文 参考訳(メタデータ) (2021-05-13T12:33:23Z) - Learning Reasoning Paths over Semantic Graphs for Video-grounded
Dialogues [73.04906599884868]
対話文脈(PDC)における推論経路の新しい枠組みを提案する。
PDCモデルは、各質問と回答の語彙成分に基づいて構築されたセマンティックグラフを通じて、対話間の情報フローを発見する。
本モデルでは,この推論経路を通じて視覚情報とテキスト情報を逐次的に処理し,提案する特徴を用いて回答を生成する。
論文 参考訳(メタデータ) (2021-03-01T07:39:26Z) - GraphDialog: Integrating Graph Knowledge into End-to-End Task-Oriented
Dialogue Systems [9.560436630775762]
エンドツーエンドのタスク指向対話システムは,平易なテキスト入力から直接システム応答を生成することを目的としている。
1つは、外部知識ベース(KB)を学習フレームワークに効果的に組み込む方法であり、もう1つは、対話履歴のセマンティクスを正確に捉える方法である。
この2つの課題は、知識ベースと対話の依存性解析ツリーにおけるグラフ構造情報を活用することで解決される。
論文 参考訳(メタデータ) (2020-10-04T00:04:40Z) - Rethinking Supervised Learning and Reinforcement Learning in
Task-Oriented Dialogue Systems [58.724629408229205]
本稿では、従来の教師あり学習とシミュレータなしの逆学習法を用いて、最先端のRL法に匹敵する性能を実現する方法を示す。
我々の主な目的は、教師あり学習で強化学習に勝ることではなく、タスク指向対話システムの最適化における強化学習と教師あり学習の役割を再考する価値を示すことである。
論文 参考訳(メタデータ) (2020-09-21T12:04:18Z) - Exploiting Structured Knowledge in Text via Graph-Guided Representation
Learning [73.0598186896953]
本稿では、知識グラフからのガイダンスを用いて、生テキスト上で学習する2つの自己教師型タスクを提案する。
エンティティレベルのマスキング言語モデルに基づいて、最初のコントリビューションはエンティティマスキングスキームです。
既存のパラダイムとは対照的に,本手法では事前学習時にのみ,知識グラフを暗黙的に使用する。
論文 参考訳(メタデータ) (2020-04-29T14:22:42Z) - Dynamic Knowledge Graph-based Dialogue Generation with Improved
Adversarial Meta-Learning [0.0]
本稿では, 対向メタラーニング(KDAD)を改良した動的知識グラフに基づく対話生成手法を提案する。
KDADは、動的知識三重項を敵攻撃の問題として定式化し、動的知識を意識した対話生成に迅速に適応する目的を取り入れている。
論文 参考訳(メタデータ) (2020-04-19T12:27:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。