Knowledge acquisition for dialogue agents using reinforcement learning on graph representations
- URL: http://arxiv.org/abs/2406.19500v1
- Date: Thu, 27 Jun 2024 19:28:42 GMT
- Title: Knowledge acquisition for dialogue agents using reinforcement learning on graph representations
- Authors: Selene Baez Santamaria, Shihan Wang, Piek Vossen,
- Abstract summary: We develop an artificial agent motivated to augment its knowledge base beyond its initial training.
The agent actively participates in dialogues with other agents, strategically acquiring new information.
We show that policies can be learned using reinforcement learning to select effective graph patterns during an interaction.
- Score: 2.3851115175441193
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We develop an artificial agent motivated to augment its knowledge base beyond its initial training. The agent actively participates in dialogues with other agents, strategically acquiring new information. The agent models its knowledge as an RDF knowledge graph, integrating new beliefs acquired through conversation. Responses in dialogue are generated by identifying graph patterns around these new integrated beliefs. We show that policies can be learned using reinforcement learning to select effective graph patterns during an interaction, without relying on explicit user feedback. Within this context, our study is a proof of concept for leveraging users as effective sources of information.
Related papers
- Knowledge Graphs and Pre-trained Language Models enhanced Representation Learning for Conversational Recommender Systems [58.561904356651276]
We introduce the Knowledge-Enhanced Entity Representation Learning (KERL) framework to improve the semantic understanding of entities for Conversational recommender systems.
KERL uses a knowledge graph and a pre-trained language model to improve the semantic understanding of entities.
KERL achieves state-of-the-art results in both recommendation and response generation tasks.
arXiv Detail & Related papers (2023-12-18T06:41:23Z) - A Contextualized Real-Time Multimodal Emotion Recognition for
Conversational Agents using Graph Convolutional Networks in Reinforcement
Learning [0.800062359410795]
We present a novel paradigm for contextualized Emotion Recognition using Graph Convolutional Network with Reinforcement Learning (conER-GRL)
Conversations are partitioned into smaller groups of utterances for effective extraction of contextual information.
The system uses Gated Recurrent Units (GRU) to extract multimodal features from these groups of utterances.
arXiv Detail & Related papers (2023-10-24T14:31:17Z) - Building Knowledge-Grounded Dialogue Systems with Graph-Based Semantic Modeling [43.0554223015728]
The knowledge-grounded dialogue task aims to generate responses that convey information from given knowledge documents.
We propose a novel graph structure, Grounded Graph, that models the semantic structure of both dialogue and knowledge.
We also propose a Grounded Graph Aware Transformer to enhance knowledge-grounded response generation.
arXiv Detail & Related papers (2022-04-27T03:31:46Z) - Towards Large-Scale Interpretable Knowledge Graph Reasoning for Dialogue
Systems [109.16553492049441]
We propose a novel method to incorporate the knowledge reasoning capability into dialogue systems in a more scalable and generalizable manner.
To the best of our knowledge, this is the first work to have transformer models generate responses by reasoning over differentiable knowledge graphs.
arXiv Detail & Related papers (2022-03-20T17:51:49Z) - Retrieval-Free Knowledge-Grounded Dialogue Response Generation with
Adapters [52.725200145600624]
We propose KnowExpert to bypass the retrieval process by injecting prior knowledge into the pre-trained language models with lightweight adapters.
Experimental results show that KnowExpert performs comparably with the retrieval-based baselines.
arXiv Detail & Related papers (2021-05-13T12:33:23Z) - Learning Reasoning Paths over Semantic Graphs for Video-grounded
Dialogues [73.04906599884868]
We propose a novel framework of Reasoning Paths in Dialogue Context (PDC)
PDC model discovers information flows among dialogue turns through a semantic graph constructed based on lexical components in each question and answer.
Our model sequentially processes both visual and textual information through this reasoning path and the propagated features are used to generate the answer.
arXiv Detail & Related papers (2021-03-01T07:39:26Z) - GraphDialog: Integrating Graph Knowledge into End-to-End Task-Oriented
Dialogue Systems [9.560436630775762]
End-to-end task-oriented dialogue systems aim to generate system responses directly from plain text inputs.
One is how to effectively incorporate external knowledge bases (KBs) into the learning framework; the other is how to accurately capture the semantics of dialogue history.
We address these two challenges by exploiting the graph structural information in the knowledge base and in the dependency parsing tree of the dialogue.
arXiv Detail & Related papers (2020-10-04T00:04:40Z) - Rethinking Supervised Learning and Reinforcement Learning in
Task-Oriented Dialogue Systems [58.724629408229205]
We demonstrate how traditional supervised learning and a simulator-free adversarial learning method can be used to achieve performance comparable to state-of-the-art RL-based methods.
Our main goal is not to beat reinforcement learning with supervised learning, but to demonstrate the value of rethinking the role of reinforcement learning and supervised learning in optimizing task-oriented dialogue systems.
arXiv Detail & Related papers (2020-09-21T12:04:18Z) - Exploiting Structured Knowledge in Text via Graph-Guided Representation
Learning [73.0598186896953]
We present two self-supervised tasks learning over raw text with the guidance from knowledge graphs.
Building upon entity-level masked language models, our first contribution is an entity masking scheme.
In contrast to existing paradigms, our approach uses knowledge graphs implicitly, only during pre-training.
arXiv Detail & Related papers (2020-04-29T14:22:42Z) - Dynamic Knowledge Graph-based Dialogue Generation with Improved
Adversarial Meta-Learning [0.0]
This paper proposes a dynamic Knowledge graph-based dialogue generation method with improved adversarial Meta-Learning (KDAD)
KDAD formulates dynamic knowledge triples as a problem of adversarial attack and incorporates the objective of quickly adapting to dynamic knowledge-aware dialogue generation.
arXiv Detail & Related papers (2020-04-19T12:27:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.