Weighted Circle Fusion: Ensembling Circle Representation from Different Object Detection Results
- URL: http://arxiv.org/abs/2406.19540v1
- Date: Thu, 27 Jun 2024 21:34:51 GMT
- Title: Weighted Circle Fusion: Ensembling Circle Representation from Different Object Detection Results
- Authors: Jialin Yue, Tianyuan Yao, Ruining Deng, Quan Liu, Juming Xiong, Haichun Yang, Yuankai Huo,
- Abstract summary: We propose Weighted Circle Fusion (WCF), a simple approach for merging predictions from various circle detection models.
Our method undergoes thorough evaluation on a proprietary dataset for glomerular detection in object detection within whole slide imaging (WSI)
The findings reveal a performance gain of 5 %, respectively, compared to existing ensemble methods.
- Score: 9.540862304334969
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, the use of circle representation has emerged as a method to improve the identification of spherical objects (such as glomeruli, cells, and nuclei) in medical imaging studies. In traditional bounding box-based object detection, combining results from multiple models improves accuracy, especially when real-time processing isn't crucial. Unfortunately, this widely adopted strategy is not readily available for combining circle representations. In this paper, we propose Weighted Circle Fusion (WCF), a simple approach for merging predictions from various circle detection models. Our method leverages confidence scores associated with each proposed bounding circle to generate averaged circles. Our method undergoes thorough evaluation on a proprietary dataset for glomerular detection in object detection within whole slide imaging (WSI). The findings reveal a performance gain of 5 %, respectively, compared to existing ensemble methods. Furthermore, the Weighted Circle Fusion technique not only improves the precision of object detection in medical images but also notably decreases false detections, presenting a promising direction for future research and application in pathological image analysis.
Related papers
- Circle Representation for Medical Instance Object Segmentation [6.4832235108711345]
We introduce CircleSnake, a simple end-to-end segmentation approach that utilizes circle contour deformation for segmenting ball-shaped medical objects at the instance level.
In practical applications, such as the detection of glomeruli, nuclei, and eosinophils in pathological images, CircleSnake has demonstrated superior performance and greater rotation invariance.
arXiv Detail & Related papers (2024-03-18T06:25:41Z) - KP-RED: Exploiting Semantic Keypoints for Joint 3D Shape Retrieval and Deformation [87.23575166061413]
KP-RED is a unified KeyPoint-driven REtrieval and Deformation framework.
It takes object scans as input and jointly retrieves and deforms the most geometrically similar CAD models.
arXiv Detail & Related papers (2024-03-15T08:44:56Z) - SIRST-5K: Exploring Massive Negatives Synthesis with Self-supervised
Learning for Robust Infrared Small Target Detection [53.19618419772467]
Single-frame infrared small target (SIRST) detection aims to recognize small targets from clutter backgrounds.
With the development of Transformer, the scale of SIRST models is constantly increasing.
With a rich diversity of infrared small target data, our algorithm significantly improves the model performance and convergence speed.
arXiv Detail & Related papers (2024-03-08T16:14:54Z) - Innovative Horizons in Aerial Imagery: LSKNet Meets DiffusionDet for
Advanced Object Detection [55.2480439325792]
We present an in-depth evaluation of an object detection model that integrates the LSKNet backbone with the DiffusionDet head.
The proposed model achieves a mean average precision (MAP) of approximately 45.7%, which is a significant improvement.
This advancement underscores the effectiveness of the proposed modifications and sets a new benchmark in aerial image analysis.
arXiv Detail & Related papers (2023-11-21T19:49:13Z) - CircleFormer: Circular Nuclei Detection in Whole Slide Images with
Circle Queries and Attention [13.947162082687417]
We present CircleFormer, a Transformer-based circular medical object detection with dynamic anchor circles.
We evaluate our method in circular nuclei detection and segmentation on the public MoNuSeg dataset.
arXiv Detail & Related papers (2023-08-30T17:01:01Z) - CircleNet: Reciprocating Feature Adaptation for Robust Pedestrian
Detection [62.41288479917261]
We propose a novel feature learning model, referred to as CircleNet, to achieve feature adaptation by mimicking the process humans look at low resolution and occluded objects.
Experiments on two pedestrian detection datasets, Caltech and CityPersons, show that CircleNet improves the performance of occluded and low-resolution pedestrians with significant margins.
arXiv Detail & Related papers (2022-12-12T04:10:24Z) - CircleSnake: Instance Segmentation with Circle Representation [4.009829991224921]
We propose CircleSnake, a simple end-to-end circle contour deformation-based segmentation method for ball-shaped medical objects.
Compared to the prevalent DeepSnake method, our contribution is three-fold.
The proposed CircleSnake method is the first end-to-end circle representation deep segmentation pipeline method.
arXiv Detail & Related papers (2022-11-02T16:34:20Z) - Sharp-GAN: Sharpness Loss Regularized GAN for Histopathology Image
Synthesis [65.47507533905188]
Conditional generative adversarial networks have been applied to generate synthetic histopathology images.
We propose a sharpness loss regularized generative adversarial network to synthesize realistic histopathology images.
arXiv Detail & Related papers (2021-10-27T18:54:25Z) - Circle Representation for Medical Object Detection [5.359910146589289]
Box representation is efficacious but not necessarily optimized for biomedical objects.
We propose a simple circle representation for medical object detection and introduce CircleNet.
When detecting glomeruli and nuclei on pathological images, the proposed circle representation achieved superior detection performance.
arXiv Detail & Related papers (2021-10-22T23:16:42Z) - Slender Object Detection: Diagnoses and Improvements [74.40792217534]
In this paper, we are concerned with the detection of a particular type of objects with extreme aspect ratios, namely textbfslender objects.
For a classical object detection method, a drastic drop of $18.9%$ mAP on COCO is observed, if solely evaluated on slender objects.
arXiv Detail & Related papers (2020-11-17T09:39:42Z) - Improving concave point detection to better segment overlapped objects
in images [0.0]
This paper presents a method that improve state-of-the-art of the concave point detection methods as a first step to segment overlapping objects on images.
It is based on the analysis of the curvature of the objects contour.
As a case study, the performance of a well-known application is evaluated, such as the splitting of overlapped cells in images of peripheral blood smears samples of patients with sickle cell anaemia.
arXiv Detail & Related papers (2020-08-03T16:32:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.