Weighted Circle Fusion: Ensembling Circle Representation from Different Object Detection Results
- URL: http://arxiv.org/abs/2406.19540v1
- Date: Thu, 27 Jun 2024 21:34:51 GMT
- Title: Weighted Circle Fusion: Ensembling Circle Representation from Different Object Detection Results
- Authors: Jialin Yue, Tianyuan Yao, Ruining Deng, Quan Liu, Juming Xiong, Haichun Yang, Yuankai Huo,
- Abstract summary: We propose Weighted Circle Fusion (WCF), a simple approach for merging predictions from various circle detection models.
Our method undergoes thorough evaluation on a proprietary dataset for glomerular detection in object detection within whole slide imaging (WSI)
The findings reveal a performance gain of 5 %, respectively, compared to existing ensemble methods.
- Score: 9.540862304334969
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, the use of circle representation has emerged as a method to improve the identification of spherical objects (such as glomeruli, cells, and nuclei) in medical imaging studies. In traditional bounding box-based object detection, combining results from multiple models improves accuracy, especially when real-time processing isn't crucial. Unfortunately, this widely adopted strategy is not readily available for combining circle representations. In this paper, we propose Weighted Circle Fusion (WCF), a simple approach for merging predictions from various circle detection models. Our method leverages confidence scores associated with each proposed bounding circle to generate averaged circles. Our method undergoes thorough evaluation on a proprietary dataset for glomerular detection in object detection within whole slide imaging (WSI). The findings reveal a performance gain of 5 %, respectively, compared to existing ensemble methods. Furthermore, the Weighted Circle Fusion technique not only improves the precision of object detection in medical images but also notably decreases false detections, presenting a promising direction for future research and application in pathological image analysis.
Related papers
- Towards Consistent Object Detection via LiDAR-Camera Synergy [17.665362927472973]
There is no existing model capable of detecting an object's position in both point clouds and images.
This paper introduces an end-to-end Consistency Object Detection (COD) algorithm framework.
To assess the accuracy of the object correlation between point clouds and images, this paper proposes a new evaluation metric, Consistency Precision.
arXiv Detail & Related papers (2024-05-02T13:04:26Z) - SIRST-5K: Exploring Massive Negatives Synthesis with Self-supervised
Learning for Robust Infrared Small Target Detection [53.19618419772467]
Single-frame infrared small target (SIRST) detection aims to recognize small targets from clutter backgrounds.
With the development of Transformer, the scale of SIRST models is constantly increasing.
With a rich diversity of infrared small target data, our algorithm significantly improves the model performance and convergence speed.
arXiv Detail & Related papers (2024-03-08T16:14:54Z) - Innovative Horizons in Aerial Imagery: LSKNet Meets DiffusionDet for
Advanced Object Detection [55.2480439325792]
We present an in-depth evaluation of an object detection model that integrates the LSKNet backbone with the DiffusionDet head.
The proposed model achieves a mean average precision (MAP) of approximately 45.7%, which is a significant improvement.
This advancement underscores the effectiveness of the proposed modifications and sets a new benchmark in aerial image analysis.
arXiv Detail & Related papers (2023-11-21T19:49:13Z) - CircleFormer: Circular Nuclei Detection in Whole Slide Images with
Circle Queries and Attention [13.947162082687417]
We present CircleFormer, a Transformer-based circular medical object detection with dynamic anchor circles.
We evaluate our method in circular nuclei detection and segmentation on the public MoNuSeg dataset.
arXiv Detail & Related papers (2023-08-30T17:01:01Z) - Rethinking k-means from manifold learning perspective [122.38667613245151]
We present a new clustering algorithm which directly detects clusters of data without mean estimation.
Specifically, we construct distance matrix between data points by Butterworth filter.
To well exploit the complementary information embedded in different views, we leverage the tensor Schatten p-norm regularization.
arXiv Detail & Related papers (2023-05-12T03:01:41Z) - CircleSnake: Instance Segmentation with Circle Representation [4.009829991224921]
We propose CircleSnake, a simple end-to-end circle contour deformation-based segmentation method for ball-shaped medical objects.
Compared to the prevalent DeepSnake method, our contribution is three-fold.
The proposed CircleSnake method is the first end-to-end circle representation deep segmentation pipeline method.
arXiv Detail & Related papers (2022-11-02T16:34:20Z) - Rethinking Spatial Invariance of Convolutional Networks for Object
Counting [119.83017534355842]
We try to use locally connected Gaussian kernels to replace the original convolution filter to estimate the spatial position in the density map.
Inspired by previous work, we propose a low-rank approximation accompanied with translation invariance to favorably implement the approximation of massive Gaussian convolution.
Our methods significantly outperform other state-of-the-art methods and achieve promising learning of the spatial position of objects.
arXiv Detail & Related papers (2022-06-10T17:51:25Z) - Unbiased IoU for Spherical Image Object Detection [45.17996641893818]
We first identify that spherical rectangles are unbiased bounding boxes for objects in spherical images, and then propose an analytical method for IoU calculation without any approximations.
Based on the unbiased representation and calculation, we also present an anchor free object detection algorithm for spherical images.
arXiv Detail & Related papers (2021-08-18T08:18:37Z) - Finding Geometric Models by Clustering in the Consensus Space [61.65661010039768]
We propose a new algorithm for finding an unknown number of geometric models, e.g., homographies.
We present a number of applications where the use of multiple geometric models improves accuracy.
These include pose estimation from multiple generalized homographies; trajectory estimation of fast-moving objects.
arXiv Detail & Related papers (2021-03-25T14:35:07Z) - Lightweight Convolutional Neural Network with Gaussian-based Grasping
Representation for Robotic Grasping Detection [4.683939045230724]
Current object detectors are difficult to strike a balance between high accuracy and fast inference speed.
We present an efficient and robust fully convolutional neural network model to perform robotic grasping pose estimation.
The network is an order of magnitude smaller than other excellent algorithms.
arXiv Detail & Related papers (2021-01-25T16:36:53Z) - DecAug: Augmenting HOI Detection via Decomposition [54.65572599920679]
Current algorithms suffer from insufficient training samples and category imbalance within datasets.
We propose an efficient and effective data augmentation method called DecAug for HOI detection.
Experiments show that our method brings up to 3.3 mAP and 1.6 mAP improvements on V-COCO and HICODET dataset.
arXiv Detail & Related papers (2020-10-02T13:59:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.