Where Are Large Language Models for Code Generation on GitHub?
- URL: http://arxiv.org/abs/2406.19544v2
- Date: Sat, 3 Aug 2024 00:40:02 GMT
- Title: Where Are Large Language Models for Code Generation on GitHub?
- Authors: Xiao Yu, Lei Liu, Xing Hu, Jacky Wai Keung, Jin Liu, Xin Xia,
- Abstract summary: ChatGPT and Copilot are the most frequently utilized for generating code on GitHub.
Most ChatGPT/Copilot-generated code snippets are relatively short and exhibit low complexity.
modifications due to bugs are even fewer, ranging from just 3% to 8% across different languages.
- Score: 10.389763758883975
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The increasing use of Large Language Models (LLMs) in software development has garnered significant attention from researchers assessing the quality of the code they generate. However, much of the research focuses on controlled datasets such as HumanEval, which fail to adequately represent how developers actually utilize LLMs' code generation capabilities or clarify the characteristics of LLM-generated code in real-world development scenarios. To bridge this gap, our study investigates the characteristics of LLM-generated code and its corresponding projects hosted on GitHub. Our findings reveal several key insights: (1) ChatGPT and Copilot are the most frequently utilized for generating code on GitHub. In contrast, there is very little code generated by other LLMs on GitHub. (2) Projects containing ChatGPT/Copilot-generated code are often small and less known, led by individuals or small teams. Despite this, most projects are continuously evolving and improving. (3) ChatGPT/Copilot is mainly utilized for generating Python, Java, and TypeScript scripts for data processing and transformation. C/C++ and JavaScript code generation focuses on algorithm and data structure implementation and user interface code. Most ChatGPT/Copilot-generated code snippets are relatively short and exhibit low complexity. (4) Compared to human-written code, ChatGPT/Copilot-generated code exists in a small proportion of projects and generally undergoes fewer modifications. Additionally, modifications due to bugs are even fewer, ranging from just 3% to 8% across different languages. (5) Most comments on ChatGPT/Copilot-generated code lack detailed information, often only stating the code's origin without mentioning prompts, human modifications, or testing status. Based on these findings, we discuss the implications for researchers and practitioners.
Related papers
- Impact of the Availability of ChatGPT on Software Development: A Synthetic Difference in Differences Estimation using GitHub Data [49.1574468325115]
ChatGPT is an AI tool that enhances software production efficiency.
We estimate ChatGPT's effects on the number of git pushes, repositories, and unique developers per 100,000 people.
These results suggest that AI tools like ChatGPT can substantially boost developer productivity, though further analysis is needed to address potential downsides such as low quality code and privacy concerns.
arXiv Detail & Related papers (2024-06-16T19:11:15Z) - VersiCode: Towards Version-controllable Code Generation [58.82709231906735]
Large Language Models (LLMs) have made tremendous strides in code generation, but existing research fails to account for the dynamic nature of software development.
We propose two novel tasks aimed at bridging this gap: version-specific code completion (VSCC) and version-aware code migration (VACM)
We conduct an extensive evaluation on VersiCode, which reveals that version-controllable code generation is indeed a significant challenge.
arXiv Detail & Related papers (2024-06-11T16:15:06Z) - A Study on Developer Behaviors for Validating and Repairing LLM-Generated Code Using Eye Tracking and IDE Actions [13.58143103712]
GitHub Copilot is a large language model (LLM)-powered code generation tool.
This paper investigates how developers validate and repair code generated by Copilot.
Being aware of the code's provenance led to improved performance, increased search efforts, more frequent Copilot usage, and higher cognitive workload.
arXiv Detail & Related papers (2024-05-25T06:20:01Z) - Exploring Multi-Lingual Bias of Large Code Models in Code Generation [55.336629780101475]
Code generation aims to synthesize code and fulfill functional requirements based on natural language (NL) specifications.
Despite the effectiveness, we observe a noticeable multilingual bias in the generation performance of large code models (LCMs)
LCMs demonstrate proficiency in generating solutions when provided with instructions in English, yet may falter when faced with semantically equivalent instructions in other NLs such as Chinese.
arXiv Detail & Related papers (2024-04-30T08:51:49Z) - Bugs in Large Language Models Generated Code: An Empirical Study [12.625305075672456]
Large Language Models (LLMs) for code have gained significant attention recently.
Similar to human-written code, LLM-generated code is prone to bugs.
This paper examines a sample of 333 bugs collected from code generated using three leading LLMs.
arXiv Detail & Related papers (2024-03-13T20:12:01Z) - DevEval: Evaluating Code Generation in Practical Software Projects [52.16841274646796]
We propose a new benchmark named DevEval, aligned with Developers' experiences in practical projects.
DevEval is collected through a rigorous pipeline, containing 2,690 samples from 119 practical projects.
We assess five popular LLMs on DevEval and reveal their actual abilities in code generation.
arXiv Detail & Related papers (2024-01-12T06:51:30Z) - Can ChatGPT replace StackOverflow? A Study on Robustness and Reliability
of Large Language Model Code Generation [8.575560293086289]
Large language models (LLMs) have shown extraordinary ability in understanding natural language and generating programming code.
The misuse of APIs in the generated code could lead to severe problem, such as resource leaks, program crashes.
arXiv Detail & Related papers (2023-08-20T18:36:28Z) - Analysis of ChatGPT on Source Code [1.3381749415517021]
This paper explores the use of Large Language Models (LLMs) and in particular ChatGPT in programming, source code analysis, and code generation.
LLMs and ChatGPT are built using machine learning and artificial intelligence techniques, and they offer several benefits to developers and programmers.
arXiv Detail & Related papers (2023-06-01T12:12:59Z) - An Empirical Cybersecurity Evaluation of GitHub Copilot's Code
Contributions [8.285068188878578]
GitHub Copilot is a language model trained over open-source GitHub code.
Code often contains bugs - and so, it is certain that the language model will have learned from exploitable, buggy code.
This raises concerns on the security of Copilot's code contributions.
arXiv Detail & Related papers (2021-08-20T17:30:33Z) - Measuring Coding Challenge Competence With APPS [54.22600767666257]
We introduce APPS, a benchmark for code generation.
Our benchmark includes 10,000 problems, which range from having simple one-line solutions to being substantial algorithmic challenges.
Recent models such as GPT-Neo can pass approximately 15% of the test cases of introductory problems.
arXiv Detail & Related papers (2021-05-20T17:58:42Z) - COSEA: Convolutional Code Search with Layer-wise Attention [90.35777733464354]
We propose a new deep learning architecture, COSEA, which leverages convolutional neural networks with layer-wise attention to capture the code's intrinsic structural logic.
COSEA can achieve significant improvements over state-of-the-art methods on code search tasks.
arXiv Detail & Related papers (2020-10-19T13:53:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.