FRED: Flexible REduction-Distribution Interconnect and Communication Implementation for Wafer-Scale Distributed Training of DNN Models
- URL: http://arxiv.org/abs/2406.19580v1
- Date: Fri, 28 Jun 2024 00:05:53 GMT
- Title: FRED: Flexible REduction-Distribution Interconnect and Communication Implementation for Wafer-Scale Distributed Training of DNN Models
- Authors: Saeed Rashidi, William Won, Sudarshan Srinivasan, Puneet Gupta, Tushar Krishna,
- Abstract summary: Distributed Deep Neural Network (DNN) training is a technique to reduce the training overhead by distributing the training tasks into multiple accelerators.
We propose FRED, a wafer-scale interconnect that is tailored for the high-BW requirements of wafer-scale networks.
Our results show that FRED can improve the average end-to-end training time of ResNet-152, Transformer-17B, GPT-3, and Transformer-1T by 1.76X, 1.87X, 1.34X, and 1.4X, respectively.
- Score: 7.605379124802678
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Distributed Deep Neural Network (DNN) training is a technique to reduce the training overhead by distributing the training tasks into multiple accelerators, according to a parallelization strategy. However, high-performance compute and interconnects are needed for maximum speed-up and linear scaling of the system. Wafer-scale systems are a promising technology that allows for tightly integrating high-end accelerators with high-speed wafer-scale interconnects, making it an attractive platform for distributed training. However, the wafer-scale interconnect should offer high performance and flexibility for various parallelization strategies to enable maximum optimizations for compute and memory usage. In this paper, we propose FRED, a wafer-scale interconnect that is tailored for the high-BW requirements of wafer-scale networks and can efficiently execute communication patterns of different parallelization strategies. Furthermore, FRED supports in-switch collective communication execution that reduces the network traffic by approximately 2X. Our results show that FRED can improve the average end-to-end training time of ResNet-152, Transformer-17B, GPT-3, and Transformer-1T by 1.76X, 1.87X, 1.34X, and 1.4X, respectively when compared to a baseline waferscale 2D-Mesh fabric.
Related papers
- FusionLLM: A Decentralized LLM Training System on Geo-distributed GPUs with Adaptive Compression [55.992528247880685]
Decentralized training faces significant challenges regarding system design and efficiency.
We present FusionLLM, a decentralized training system designed and implemented for training large deep neural networks (DNNs)
We show that our system and method can achieve 1.45 - 9.39x speedup compared to baseline methods while ensuring convergence.
arXiv Detail & Related papers (2024-10-16T16:13:19Z) - Efficient Asynchronous Federated Learning with Sparsification and
Quantization [55.6801207905772]
Federated Learning (FL) is attracting more and more attention to collaboratively train a machine learning model without transferring raw data.
FL generally exploits a parameter server and a large number of edge devices during the whole process of the model training.
We propose TEASQ-Fed to exploit edge devices to asynchronously participate in the training process by actively applying for tasks.
arXiv Detail & Related papers (2023-12-23T07:47:07Z) - AccEPT: An Acceleration Scheme for Speeding Up Edge Pipeline-parallel
Training [22.107070114339038]
We propose AccEPT, an acceleration scheme for accelerating the edge collaborative pipeline-parallel training.
In particular, we propose a light-weight adaptive latency predictor to accurately estimate the latency of each layer at different devices.
Our numerical results demonstrate that our proposed acceleration approach is able to significantly speed up edge pipeline parallel training up to 3 times faster.
arXiv Detail & Related papers (2023-11-10T02:18:33Z) - Vertical Federated Learning over Cloud-RAN: Convergence Analysis and
System Optimization [82.12796238714589]
We propose a novel cloud radio access network (Cloud-RAN) based vertical FL system to enable fast and accurate model aggregation.
We characterize the convergence behavior of the vertical FL algorithm considering both uplink and downlink transmissions.
We establish a system optimization framework by joint transceiver and fronthaul quantization design, for which successive convex approximation and alternate convex search based system optimization algorithms are developed.
arXiv Detail & Related papers (2023-05-04T09:26:03Z) - Efficient Parallel Split Learning over Resource-constrained Wireless
Edge Networks [44.37047471448793]
In this paper, we advocate the integration of edge computing paradigm and parallel split learning (PSL)
We propose an innovative PSL framework, namely, efficient parallel split learning (EPSL) to accelerate model training.
We show that the proposed EPSL framework significantly decreases the training latency needed to achieve a target accuracy.
arXiv Detail & Related papers (2023-03-26T16:09:48Z) - On Optimizing the Communication of Model Parallelism [74.15423270435949]
We study a novel and important communication pattern in large-scale model-parallel deep learning (DL)
In cross-mesh resharding, a sharded tensor needs to be sent from a source device mesh to a destination device mesh.
We propose two contributions to address cross-mesh resharding: an efficient broadcast-based communication system, and an "overlapping-friendly" pipeline schedule.
arXiv Detail & Related papers (2022-11-10T03:56:48Z) - Teal: Learning-Accelerated Optimization of WAN Traffic Engineering [68.7863363109948]
We present Teal, a learning-based TE algorithm that leverages the parallel processing power of GPUs to accelerate TE control.
To reduce the problem scale and make learning tractable, Teal employs a multi-agent reinforcement learning (RL) algorithm to independently allocate each traffic demand.
Compared with other TE acceleration schemes, Teal satisfies 6--32% more traffic demand and yields 197--625x speedups.
arXiv Detail & Related papers (2022-10-25T04:46:30Z) - Predictive GAN-powered Multi-Objective Optimization for Hybrid Federated
Split Learning [56.125720497163684]
We propose a hybrid federated split learning framework in wireless networks.
We design a parallel computing scheme for model splitting without label sharing, and theoretically analyze the influence of the delayed gradient caused by the scheme on the convergence speed.
arXiv Detail & Related papers (2022-09-02T10:29:56Z) - Themis: A Network Bandwidth-Aware Collective Scheduling Policy for
Distributed Training of DL Models [2.6599014990168834]
Distributed training is a solution to reduce training time by splitting the task across multiple NPUs.
Themis is a novel collective scheduling scheme that dynamically schedules collectives to balance the communication loads across all dimensions.
Our results show that on average, Themis can improve the network BW utilization of single All-Reduce by 1.88x (2.92x max)
arXiv Detail & Related papers (2021-10-09T06:50:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.