Multimodal Data Integration for Precision Oncology: Challenges and Future Directions
- URL: http://arxiv.org/abs/2406.19611v1
- Date: Fri, 28 Jun 2024 02:35:05 GMT
- Title: Multimodal Data Integration for Precision Oncology: Challenges and Future Directions
- Authors: Huajun Zhou, Fengtao Zhou, Chenyu Zhao, Yingxue Xu, Luyang Luo, Hao Chen,
- Abstract summary: The essence of precision oncology lies in its commitment to tailor targeted treatments and care measures to each patient based on the individual characteristics of the tumor.
Over the past decade, multimodal data integration technology for precision oncology has made significant strides.
We provide a comprehensive overview of about 300 papers detailing cutting-edge multimodal data integration techniques in precision oncology.
- Score: 10.817613081663007
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The essence of precision oncology lies in its commitment to tailor targeted treatments and care measures to each patient based on the individual characteristics of the tumor. The inherent heterogeneity of tumors necessitates gathering information from diverse data sources to provide valuable insights from various perspectives, fostering a holistic comprehension of the tumor. Over the past decade, multimodal data integration technology for precision oncology has made significant strides, showcasing remarkable progress in understanding the intricate details within heterogeneous data modalities. These strides have exhibited tremendous potential for improving clinical decision-making and model interpretation, contributing to the advancement of cancer care and treatment. Given the rapid progress that has been achieved, we provide a comprehensive overview of about 300 papers detailing cutting-edge multimodal data integration techniques in precision oncology. In addition, we conclude the primary clinical applications that have reaped significant benefits, including early assessment, diagnosis, prognosis, and biomarker discovery. Finally, derived from the findings of this survey, we present an in-depth analysis that explores the pivotal challenges and reveals essential pathways for future research in the field of multimodal data integration for precision oncology.
Related papers
- TopOC: Topological Deep Learning for Ovarian and Breast Cancer Diagnosis [3.262230127283452]
Topological data analysis offers a unique approach by extracting essential information through the evaluation of topological patterns across different color channels.
We show that the inclusion of topological features significantly improves the differentiation of tumor types in ovarian and breast cancers.
arXiv Detail & Related papers (2024-10-13T12:24:13Z) - Optimizing Skin Lesion Classification via Multimodal Data and Auxiliary
Task Integration [54.76511683427566]
This research introduces a novel multimodal method for classifying skin lesions, integrating smartphone-captured images with essential clinical and demographic information.
A distinctive aspect of this method is the integration of an auxiliary task focused on super-resolution image prediction.
The experimental evaluations have been conducted using the PAD-UFES20 dataset, applying various deep-learning architectures.
arXiv Detail & Related papers (2024-02-16T05:16:20Z) - Knowledge-Informed Machine Learning for Cancer Diagnosis and Prognosis:
A review [2.2268038840298714]
We review the state-of-the-art machine learning studies that adopted the fusion of biomedical knowledge and data.
We provide an overview of diverse forms of knowledge representation and current strategies of knowledge integration into machine learning pipelines.
arXiv Detail & Related papers (2024-01-12T07:01:36Z) - Single-Cell Deep Clustering Method Assisted by Exogenous Gene
Information: A Novel Approach to Identifying Cell Types [50.55583697209676]
We develop an attention-enhanced graph autoencoder, which is designed to efficiently capture the topological features between cells.
During the clustering process, we integrated both sets of information and reconstructed the features of both cells and genes to generate a discriminative representation.
This research offers enhanced insights into the characteristics and distribution of cells, thereby laying the groundwork for early diagnosis and treatment of diseases.
arXiv Detail & Related papers (2023-11-28T09:14:55Z) - Building Flexible, Scalable, and Machine Learning-ready Multimodal
Oncology Datasets [17.774341783844026]
This work proposes Multimodal Integration of Oncology Data System (MINDS)
MINDS is a flexible, scalable, and cost-effective metadata framework for efficiently fusing disparate data from public sources.
By harmonizing multimodal data, MINDS aims to potentially empower researchers with greater analytical ability.
arXiv Detail & Related papers (2023-09-30T15:44:39Z) - Validating polyp and instrument segmentation methods in colonoscopy through Medico 2020 and MedAI 2021 Challenges [58.32937972322058]
"Medico automatic polyp segmentation (Medico 2020)" and "MedAI: Transparency in Medical Image (MedAI 2021)" competitions.
We present a comprehensive summary and analyze each contribution, highlight the strength of the best-performing methods, and discuss the possibility of clinical translations of such methods into the clinic.
arXiv Detail & Related papers (2023-07-30T16:08:45Z) - Incomplete Multimodal Learning for Complex Brain Disorders Prediction [65.95783479249745]
We propose a new incomplete multimodal data integration approach that employs transformers and generative adversarial networks.
We apply our new method to predict cognitive degeneration and disease outcomes using the multimodal imaging genetic data from Alzheimer's Disease Neuroimaging Initiative cohort.
arXiv Detail & Related papers (2023-05-25T16:29:16Z) - Multimodal Data Integration for Oncology in the Era of Deep Neural Networks: A Review [0.0]
Integrating diverse data types can improve the accuracy and reliability of cancer diagnosis and treatment.
Deep neural networks have facilitated the development of sophisticated multimodal data fusion approaches.
Recent deep learning frameworks such as Graph Neural Networks (GNNs) and Transformers have shown remarkable success in multimodal learning.
arXiv Detail & Related papers (2023-03-11T17:52:03Z) - Deep Biological Pathway Informed Pathology-Genomic Multimodal Survival
Prediction [7.133948707208067]
We propose PONET- a novel biological pathway-informed pathology-genomic deep model.
Our proposed method achieves superior predictive performance and reveals meaningful biological interpretations.
arXiv Detail & Related papers (2023-01-06T05:24:41Z) - Topological Data Analysis of copy number alterations in cancer [70.85487611525896]
We explore the potential to capture information contained in cancer genomic information using a novel topology-based approach.
We find that this technique has the potential to extract meaningful low-dimensional representations in cancer somatic genetic data.
arXiv Detail & Related papers (2020-11-22T17:31:23Z) - Trajectories, bifurcations and pseudotime in large clinical datasets:
applications to myocardial infarction and diabetes data [94.37521840642141]
We suggest a semi-supervised methodology for the analysis of large clinical datasets, characterized by mixed data types and missing values.
The methodology is based on application of elastic principal graphs which can address simultaneously the tasks of dimensionality reduction, data visualization, clustering, feature selection and quantifying the geodesic distances (pseudotime) in partially ordered sequences of observations.
arXiv Detail & Related papers (2020-07-07T21:04:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.