論文の概要: IDT: Dual-Task Adversarial Attacks for Privacy Protection
- arxiv url: http://arxiv.org/abs/2406.19642v1
- Date: Fri, 28 Jun 2024 04:14:35 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-01 17:50:12.919878
- Title: IDT: Dual-Task Adversarial Attacks for Privacy Protection
- Title(参考訳): IDT: プライバシー保護のための二重対面攻撃
- Authors: Pedro Faustini, Shakila Mahjabin Tonni, Annabelle McIver, Qiongkai Xu, Mark Dras,
- Abstract要約: プライバシを保護するには、センシティブな属性を検出できないモデル内の表現を使用する必要がある。
補助的および解釈可能なモデルによる予測を分析し,どのトークンが変更に重要かを識別する手法であるIDTを提案する。
我々は、異なるタスクに適したNLPのための異なるデータセットを評価する。
- 参考スコア(独自算出の注目度): 8.312362092693377
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Natural language processing (NLP) models may leak private information in different ways, including membership inference, reconstruction or attribute inference attacks. Sensitive information may not be explicit in the text, but hidden in underlying writing characteristics. Methods to protect privacy can involve using representations inside models that are demonstrated not to detect sensitive attributes or -- for instance, in cases where users might not trust a model, the sort of scenario of interest here -- changing the raw text before models can have access to it. The goal is to rewrite text to prevent someone from inferring a sensitive attribute (e.g. the gender of the author, or their location by the writing style) whilst keeping the text useful for its original intention (e.g. the sentiment of a product review). The few works tackling this have focused on generative techniques. However, these often create extensively different texts from the original ones or face problems such as mode collapse. This paper explores a novel adaptation of adversarial attack techniques to manipulate a text to deceive a classifier w.r.t one task (privacy) whilst keeping the predictions of another classifier trained for another task (utility) unchanged. We propose IDT, a method that analyses predictions made by auxiliary and interpretable models to identify which tokens are important to change for the privacy task, and which ones should be kept for the utility task. We evaluate different datasets for NLP suitable for different tasks. Automatic and human evaluations show that IDT retains the utility of text, while also outperforming existing methods when deceiving a classifier w.r.t privacy task.
- Abstract(参考訳): 自然言語処理(NLP)モデルは、メンバシップ推論、再構築、属性推論攻撃など、さまざまな方法で個人情報をリークする可能性がある。
センシティブな情報はテキストでは明示されていないかもしれないが、基礎となる書き込み特性には隠されている。
プライバシを保護する方法は、センシティブな属性を検出できないことを示すモデル内部の表現を使用する場合や、モデルにアクセスできる前に生テキストを変更する場合などである。
テキストの書き直しは、誰かがセンシティブな属性(例えば、著者の性別や、執筆スタイルによる位置など)を推測するのを防止し、テキストを元の意図(例えば、製品レビューの感情)に役立てることを目的としている。
これに取り組む数少ない研究は、生成技術に焦点を当てている。
しかし、これらはオリジナルのテキストと大きく異なるテキストを生成したり、モード崩壊などの問題に直面したりすることが多い。
本稿では,あるタスク (プライバシ) に対して,別のタスク (ユーティリティ) に対して訓練した他の分類器の予測を一定に保ちながら,あるタスク (プライバシ) を欺くためにテキストを操作するために,敵対的攻撃手法の新たな適応について検討する。
IDTは,プライバシタスクにおいて,どのトークンが重要なのか,どのトークンがユーティリティタスクのために保持されるべきなのかを,補助的および解釈可能なモデルで予測する手法である。
我々は、異なるタスクに適したNLPのための異なるデータセットを評価する。
自動的および人的評価は、IDTがテキストの有用性を維持し、また、分類器w.r.tのプライバシータスクを判断する際の既存の手法よりも優れていることを示している。
関連論文リスト
- Detecting Machine-Generated Long-Form Content with Latent-Space Variables [54.07946647012579]
既存のゼロショット検出器は主に、現実世界のドメインシフトに弱いトークンレベルの分布に焦点を当てている。
本稿では,イベント遷移などの抽象的要素を機械対人文検出の鍵となる要因として組み込んだ,より堅牢な手法を提案する。
論文 参考訳(メタデータ) (2024-10-04T18:42:09Z) - Protecting Privacy in Classifiers by Token Manipulation [3.5033860596797965]
テキスト分類モデルに焦点をあて、様々なトークンマッピングとコンテキスト化された操作機能について検討する。
いくつかのトークンマッピング関数の実装は簡単で簡単ですが、ダウンストリームタスクのパフォーマンスに大きな影響を与えます。
比較すると、文脈化された操作はパフォーマンスを改善する。
論文 参考訳(メタデータ) (2024-07-01T14:41:59Z) - Just Rewrite It Again: A Post-Processing Method for Enhanced Semantic Similarity and Privacy Preservation of Differentially Private Rewritten Text [3.3916160303055567]
本稿では,書き直したテキストを元のテキストと整合させることを目標とした,簡単な後処理手法を提案する。
以上の結果から,このような手法は,従来の入力よりも意味論的に類似した出力を生成するだけでなく,経験的プライバシ評価において平均的なスコアがよいテキストを生成することが示唆された。
論文 参考訳(メタデータ) (2024-05-30T08:41:33Z) - Forging the Forger: An Attempt to Improve Authorship Verification via Data Augmentation [52.72682366640554]
著者検証(英語: Authorship Verification, AV)とは、ある特定の著者によって書かれたか、別の人物によって書かれたのかを推測するテキスト分類タスクである。
多くのAVシステムは敵の攻撃に弱いことが示されており、悪意のある著者は、その書体スタイルを隠蔽するか、あるいは他の著者の書体を模倣することによって、積極的に分類者を騙そうとしている。
論文 参考訳(メタデータ) (2024-03-17T16:36:26Z) - Few-Shot Detection of Machine-Generated Text using Style Representations [4.326503887981912]
人間の文章を巧みに模倣する言語モデルは、虐待のかなりのリスクを負う。
そこで本研究では,人間が作成したテキストから推定した書体スタイルの表現を活用することを提案する。
また,人間と機械作家の区別にも有効であることがわかった。
論文 参考訳(メタデータ) (2024-01-12T17:26:51Z) - AuthentiGPT: Detecting Machine-Generated Text via Black-Box Language
Models Denoising [4.924903495092775]
大きな言語モデル(LLM)は、人間の文章を忠実に模倣するテキストを作成し、潜在的に誤用につながる可能性がある。
本稿では,機械生成テキストと人文テキストを区別する効率的な分類器であるAuthentiGPTを提案する。
ドメイン固有のデータセットの0.918 AUROCスコアで、AuthentiGPTは、他の商用アルゴリズムよりも有効であることを示した。
論文 参考訳(メタデータ) (2023-11-13T19:36:54Z) - Paraphrasing evades detectors of AI-generated text, but retrieval is an
effective defense [56.077252790310176]
本稿では,パラフレーズ生成モデル(DIPPER)を提案する。
DIPPERを使って3つの大きな言語モデル(GPT3.5-davinci-003)で生成されたテキストを言い換えると、透かしを含むいくつかの検出器を回避できた。
我々は,言語モデルAPIプロバイダによって維持されなければならない,意味論的に類似した世代を検索するシンプルなディフェンスを導入する。
論文 参考訳(メタデータ) (2023-03-23T16:29:27Z) - Verifying the Robustness of Automatic Credibility Assessment [50.55687778699995]
入力テキストにおける意味保存的変化がモデルを誤解させる可能性があることを示す。
また、誤情報検出タスクにおける被害者モデルと攻撃方法の両方をテストするベンチマークであるBODEGAについても紹介する。
我々の実験結果によると、現代の大規模言語モデルは、以前のより小さなソリューションよりも攻撃に対して脆弱であることが多い。
論文 参考訳(メタデータ) (2023-03-14T16:11:47Z) - PART: Pre-trained Authorship Representation Transformer [64.78260098263489]
文書を書く著者は、語彙、レジストリ、句読点、ミススペル、絵文字の使用など、テキスト内での識別情報をインプリントする。
以前の作品では、手作りのフィーチャや分類タスクを使用して著者モデルをトレーニングし、ドメイン外の著者に対するパフォーマンスの低下につながった。
セマンティクスの代わりにtextbfauthorship の埋め込みを学習するために、対照的に訓練されたモデルを提案する。
論文 参考訳(メタデータ) (2022-09-30T11:08:39Z) - Adversarial Watermarking Transformer: Towards Tracing Text Provenance
with Data Hiding [80.3811072650087]
自然言語の透かしを防御として研究し,テキストの出所の発見と追跡に役立てる。
本稿では,適応型透かし変換器(AWT)とエンコーダ・デコーダ・デコーダを併用した対向型透かし変換器(AWT)について述べる。
AWTは、テキストにデータを隠蔽する最初のエンドツーエンドモデルである。
論文 参考訳(メタデータ) (2020-09-07T11:01:24Z) - Privacy Guarantees for De-identifying Text Transformations [17.636430224292866]
我々は、差分プライバシーに基づいて、テキスト変換に基づく復号化手法の正式なプライバシー保証を導出する。
複数の自然言語理解タスクにおける深層学習モデルを用いた,より洗練された単語間置換手法との比較を行った。
単語ごとの置換だけが、様々なタスクのパフォーマンス低下に対して堅牢であることに気付きました。
論文 参考訳(メタデータ) (2020-08-07T12:06:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。