Directly Training Temporal Spiking Neural Network with Sparse Surrogate Gradient
- URL: http://arxiv.org/abs/2406.19645v1
- Date: Fri, 28 Jun 2024 04:21:32 GMT
- Title: Directly Training Temporal Spiking Neural Network with Sparse Surrogate Gradient
- Authors: Yang Li, Feifei Zhao, Dongcheng Zhao, Yi Zeng,
- Abstract summary: Brain-inspired Spiking Neural Networks (SNNs) have attracted much attention due to their event-based computing and energy-efficient features.
We propose Masked Surrogate Gradients (MSGs) to balance the effectiveness of training and the sparseness of the gradient, thereby improving the generalization ability of SNNs.
- Score: 8.516243389583702
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Brain-inspired Spiking Neural Networks (SNNs) have attracted much attention due to their event-based computing and energy-efficient features. However, the spiking all-or-none nature has prevented direct training of SNNs for various applications. The surrogate gradient (SG) algorithm has recently enabled spiking neural networks to shine in neuromorphic hardware. However, introducing surrogate gradients has caused SNNs to lose their original sparsity, thus leading to the potential performance loss. In this paper, we first analyze the current problem of direct training using SGs and then propose Masked Surrogate Gradients (MSGs) to balance the effectiveness of training and the sparseness of the gradient, thereby improving the generalization ability of SNNs. Moreover, we introduce a temporally weighted output (TWO) method to decode the network output, reinforcing the importance of correct timesteps. Extensive experiments on diverse network structures and datasets show that training with MSG and TWO surpasses the SOTA technique.
Related papers
- Direct Learning-Based Deep Spiking Neural Networks: A Review [17.255056657521195]
spiking neural network (SNN) is a promising brain-inspired computational model with binary spike information transmission mechanism.
In this paper, we present a survey of direct learning-based deep SNN works, mainly categorized into accuracy improvement methods, efficiency improvement methods, and temporal dynamics utilization methods.
arXiv Detail & Related papers (2023-05-31T10:32:16Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
Physics-informed neural networks (PINNs) have effectively been demonstrated in solving forward and inverse differential equation problems.
PINNs are trapped in training failures when the target functions to be approximated exhibit high-frequency or multi-scale features.
In this paper, we propose to employ implicit gradient descent (ISGD) method to train PINNs for improving the stability of training process.
arXiv Detail & Related papers (2023-03-03T08:17:47Z) - SPIDE: A Purely Spike-based Method for Training Feedback Spiking Neural
Networks [56.35403810762512]
Spiking neural networks (SNNs) with event-based computation are promising brain-inspired models for energy-efficient applications on neuromorphic hardware.
We study spike-based implicit differentiation on the equilibrium state (SPIDE) that extends the recently proposed training method.
arXiv Detail & Related papers (2023-02-01T04:22:59Z) - Exact Gradient Computation for Spiking Neural Networks Through Forward
Propagation [39.33537954568678]
Spiking neural networks (SNN) have emerged as alternatives to traditional neural networks.
We propose a novel training algorithm, called emphforward propagation (FP), that computes exact gradients for SNN.
arXiv Detail & Related papers (2022-10-18T20:28:21Z) - Multi-Level Firing with Spiking DS-ResNet: Enabling Better and Deeper
Directly-Trained Spiking Neural Networks [19.490903216456758]
Spiking neural networks (SNNs) are neural networks with asynchronous discrete and sparse characteristics.
We propose a multi-level firing (MLF) method based on the existing spiking-suppressed residual network (spiking DS-ResNet)
arXiv Detail & Related papers (2022-10-12T16:39:46Z) - Online Training Through Time for Spiking Neural Networks [66.7744060103562]
Spiking neural networks (SNNs) are promising brain-inspired energy-efficient models.
Recent progress in training methods has enabled successful deep SNNs on large-scale tasks with low latency.
We propose online training through time (OTTT) for SNNs, which is derived from BPTT to enable forward-in-time learning.
arXiv Detail & Related papers (2022-10-09T07:47:56Z) - Training High-Performance Low-Latency Spiking Neural Networks by
Differentiation on Spike Representation [70.75043144299168]
Spiking Neural Network (SNN) is a promising energy-efficient AI model when implemented on neuromorphic hardware.
It is a challenge to efficiently train SNNs due to their non-differentiability.
We propose the Differentiation on Spike Representation (DSR) method, which could achieve high performance.
arXiv Detail & Related papers (2022-05-01T12:44:49Z) - Temporal Efficient Training of Spiking Neural Network via Gradient
Re-weighting [29.685909045226847]
Brain-inspired spiking neuron networks (SNNs) have attracted widespread research interest because of their event-driven and energy-efficient characteristics.
Current direct training approach with surrogate gradient results in SNNs with poor generalizability.
We introduce the temporal efficient training (TET) approach to compensate for the loss of momentum in the gradient descent with SG.
arXiv Detail & Related papers (2022-02-24T08:02:37Z) - Spatial-Temporal-Fusion BNN: Variational Bayesian Feature Layer [77.78479877473899]
We design a spatial-temporal-fusion BNN for efficiently scaling BNNs to large models.
Compared to vanilla BNNs, our approach can greatly reduce the training time and the number of parameters, which contributes to scale BNNs efficiently.
arXiv Detail & Related papers (2021-12-12T17:13:14Z) - HIRE-SNN: Harnessing the Inherent Robustness of Energy-Efficient Deep
Spiking Neural Networks by Training with Crafted Input Noise [13.904091056365765]
We present an SNN training algorithm that uses crafted input noise and incurs no additional training time.
Compared to standard trained direct input SNNs, our trained models yield improved classification accuracy of up to 13.7%.
Our models also outperform inherently robust SNNs trained on rate-coded inputs with improved or similar classification performance on attack-generated images.
arXiv Detail & Related papers (2021-10-06T16:48:48Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
Spiking neural networks (SNNs) have shown advantages over traditional artificial neural networks (ANNs) for low latency and high computational efficiency.
We propose a novel ANN-to-SNN conversion and layer-wise learning framework for rapid and efficient pattern recognition.
arXiv Detail & Related papers (2020-07-02T15:38:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.