論文の概要: AstMatch: Adversarial Self-training Consistency Framework for Semi-Supervised Medical Image Segmentation
- arxiv url: http://arxiv.org/abs/2406.19649v1
- Date: Fri, 28 Jun 2024 04:38:12 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-01 17:50:12.903782
- Title: AstMatch: Adversarial Self-training Consistency Framework for Semi-Supervised Medical Image Segmentation
- Title(参考訳): AstMatch:半監督医用画像分割のための対向的自己学習一貫性フレームワーク
- Authors: Guanghao Zhu, Jing Zhang, Juanxiu Liu, Xiaohui Du, Ruqian Hao, Yong Liu, Lin Liu,
- Abstract要約: 半教師付き学習(SSL)は,医用画像のセグメンテーションにおいて有意な可能性を示唆している。
本研究では,対戦型自己学習一貫性フレームワーク(AstMatch)を提案する。
提案されたAstMatchは、3つの公開データセット上の最先端SSLメソッドで広く評価されている。
- 参考スコア(独自算出の注目度): 19.80612796391153
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Semi-supervised learning (SSL) has shown considerable potential in medical image segmentation, primarily leveraging consistency regularization and pseudo-labeling. However, many SSL approaches only pay attention to low-level consistency and overlook the significance of pseudo-label reliability. Therefore, in this work, we propose an adversarial self-training consistency framework (AstMatch). Firstly, we design an adversarial consistency regularization (ACR) approach to enhance knowledge transfer and strengthen prediction consistency under varying perturbation intensities. Second, we apply a feature matching loss for adversarial training to incorporate high-level consistency regularization. Additionally, we present the pyramid channel attention (PCA) and efficient channel and spatial attention (ECSA) modules to improve the discriminator's performance. Finally, we propose an adaptive self-training (AST) approach to ensure the pseudo-labels' quality. The proposed AstMatch has been extensively evaluated with cutting-edge SSL methods on three public-available datasets. The experimental results under different labeled ratios indicate that AstMatch outperforms other existing methods, achieving new state-of-the-art performance. Our code will be available at https://github.com/GuanghaoZhu663/AstMatch.
- Abstract(参考訳): 半教師付き学習 (SSL) は, 整合性正規化と擬似ラベルの活用を主眼として, 医用画像のセグメンテーションにおいて有意な可能性を示している。
しかし、多くのSSLアプローチは低レベルの一貫性にのみ注意を払っており、擬似ラベル信頼性の重要性を見落としている。
そこで本研究では,対戦型自己学習一貫性フレームワーク(AstMatch)を提案する。
まず, 逆整合性正規化(ACR)アプローチを設計し, 異なる摂動強度下での知識伝達の促進と予測整合性の強化を図る。
第2に、高レベルの整合性正規化を組み込むために、敵の訓練に特徴整合損失を適用した。
さらに、識別器の性能を向上させるために、ピラミッドチャネルアテンション(PCA)と効率的なチャネルと空間アテンション(ECSA)モジュールを提示する。
最後に,擬似ラベルの品質を確保するための適応型自己学習(AST)手法を提案する。
提案されたAstMatchは、3つの公開データセット上の最先端SSLメソッドで広く評価されている。
ラベル付き比率の異なる実験結果から、AstMatchは他の既存手法よりも優れた性能を示し、新しい最先端性能を実現している。
私たちのコードはhttps://github.com/GuanghaoZhu663/AstMatch.comで公開されます。
関連論文リスト
- SemSim: Revisiting Weak-to-Strong Consistency from a Semantic Similarity Perspective for Semi-supervised Medical Image Segmentation [18.223854197580145]
医用画像分割のための半教師付き学習(SSL)は難しいが、非常に実践的な課題である。
セムシム(SemSim)という名前のFixMatchに基づく新しいフレームワークを提案する。
SemSimは3つの公開セグメンテーションベンチマークで最先端の手法よりも一貫した改善をもたらすことを示す。
論文 参考訳(メタデータ) (2024-10-17T12:31:37Z) - JointMatch: A Unified Approach for Diverse and Collaborative
Pseudo-Labeling to Semi-Supervised Text Classification [65.268245109828]
半教師付きテキスト分類(SSTC)は、ラベルのないデータを活用する能力によって注目を集めている。
擬似ラベルに基づく既存のアプローチは、擬似ラベルバイアスと誤り蓄積の問題に悩まされる。
我々は、最近の半教師付き学習からアイデアを統一することでこれらの課題に対処する、SSTCの総合的なアプローチであるJointMatchを提案する。
論文 参考訳(メタデータ) (2023-10-23T05:43:35Z) - Rethinking Clustering-Based Pseudo-Labeling for Unsupervised
Meta-Learning [146.11600461034746]
教師なしメタラーニングのメソッドであるCACTUsは、擬似ラベル付きクラスタリングベースのアプローチである。
このアプローチはモデルに依存しないため、教師付きアルゴリズムと組み合わせてラベルのないデータから学習することができる。
このことの核となる理由は、埋め込み空間においてクラスタリングに優しい性質が欠如していることである。
論文 参考訳(メタデータ) (2022-09-27T19:04:36Z) - Decoupled Adversarial Contrastive Learning for Self-supervised
Adversarial Robustness [69.39073806630583]
頑健な表現学習のための対人訓練(AT)と教師なし表現学習のための自己教師型学習(SSL)は2つの活発な研究分野である。
Decoupled Adversarial Contrastive Learning (DeACL) と呼ばれる2段階のフレームワークを提案する。
論文 参考訳(メタデータ) (2022-07-22T06:30:44Z) - PseCo: Pseudo Labeling and Consistency Training for Semi-Supervised
Object Detection [42.75316070378037]
予測誘導ラベル割り当て(PLA)と正の確率整合投票(PCV)を含むNPL(Noisy Pseudo box Learning)を提案する。
ベンチマークでは PSEudo labeling と Consistency training (PseCo) が SOTA (Soft Teacher) の2.0, 1.8, 2.0 を1%, 5%, 10% で上回っている。
論文 参考訳(メタデータ) (2022-03-30T13:59:22Z) - MisMatch: Calibrated Segmentation via Consistency on Differential
Morphological Feature Perturbations with Limited Labels [5.500466607182699]
半教師付き学習は、医用画像におけるラベル不足の問題に対処する上で有望なパラダイムである。
MisMatchは、ペアの予測間の一貫性に基づいた半教師付きセグメンテーションフレームワークである。
論文 参考訳(メタデータ) (2021-10-23T09:22:41Z) - Trash to Treasure: Harvesting OOD Data with Cross-Modal Matching for
Open-Set Semi-Supervised Learning [101.28281124670647]
オープンセット半教師付き学習(Open-set SSL)では、ラベルなしデータにOOD(Out-of-distribution)サンプルを含む、難しいが実用的なシナリオを調査する。
我々は、OODデータの存在を効果的に活用し、特徴学習を増強する新しいトレーニングメカニズムを提案する。
我々のアプローチは、オープンセットSSLのパフォーマンスを大幅に向上させ、最先端技術よりも大きなマージンで性能を向上します。
論文 参考訳(メタデータ) (2021-08-12T09:14:44Z) - OpenMatch: Open-set Consistency Regularization for Semi-supervised
Learning with Outliers [71.08167292329028]
我々はOpenMatchと呼ばれる新しいオープンセットセミスーパーバイザードラーニング(OSSL)アプローチを提案する。
OpenMatchは、1-vs-all(OVA)分類器に基づいた新規検出とFixMatchを統合する。
3つのデータセットで最先端のパフォーマンスを実現し、CIFAR10の未ラベルデータで見えないアウトリーチを検出する上で、完全な教師付きモデルよりも優れています。
論文 参考訳(メタデータ) (2021-05-28T23:57:15Z) - Consistency Regularization with Generative Adversarial Networks for
Semi-Supervised Learning [2.9707483702447783]
GAN(Adversarial Adversarial Networks)に基づく半教師付き学習(SSL)アプローチは,多数の未ラベルサンプルを利用して分類性能を向上させる。
しかし、彼らのパフォーマンスは、最先端の非GANベースのSSLアプローチよりも遅れている。
この主な理由は、局所摂動下で同じ画像上でのクラス確率予測の整合性の欠如である。
論文 参考訳(メタデータ) (2020-07-08T01:47:10Z) - FixMatch: Simplifying Semi-Supervised Learning with Consistency and
Confidence [93.91751021370638]
半教師付き学習(SSL)は、ラベルのないデータを活用してモデルの性能を向上させる効果的な手段を提供する。
本稿では、整合正則化と擬似ラベル付けという2つの共通SSL手法の単純な組み合わせのパワーを実証する。
筆者らのアルゴリズムであるFixMatchは、まず、弱拡張未ラベル画像上のモデルの予測を用いて擬似ラベルを生成する。
論文 参考訳(メタデータ) (2020-01-21T18:32:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。