CANDY: A Benchmark for Continuous Approximate Nearest Neighbor Search with Dynamic Data Ingestion
- URL: http://arxiv.org/abs/2406.19651v1
- Date: Fri, 28 Jun 2024 04:46:11 GMT
- Title: CANDY: A Benchmark for Continuous Approximate Nearest Neighbor Search with Dynamic Data Ingestion
- Authors: Xianzhi Zeng, Zhuoyan Wu, Xinjing Hu, Xuanhua Shi, Shixuan Sun, Shuhao Zhang,
- Abstract summary: We introduce CANDY, a benchmark tailored for Continuous Approximate Nearest Neighbor Search with Dynamic Data Ingestion.
CANDY comprehensively assesses a wide range of AKNN algorithms, integrating advanced optimizations such as machine learning-driven inference.
Our evaluations across diverse datasets demonstrate that simpler AKNN baselines often surpass more complex alternatives in terms of recall and latency.
- Score: 8.036012885171166
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Approximate K Nearest Neighbor (AKNN) algorithms play a pivotal role in various AI applications, including information retrieval, computer vision, and natural language processing. Although numerous AKNN algorithms and benchmarks have been developed recently to evaluate their effectiveness, the dynamic nature of real-world data presents significant challenges that existing benchmarks fail to address. Traditional benchmarks primarily assess retrieval effectiveness in static contexts and often overlook update efficiency, which is crucial for handling continuous data ingestion. This limitation results in an incomplete assessment of an AKNN algorithms ability to adapt to changing data patterns, thereby restricting insights into their performance in dynamic environments. To address these gaps, we introduce CANDY, a benchmark tailored for Continuous Approximate Nearest Neighbor Search with Dynamic Data Ingestion. CANDY comprehensively assesses a wide range of AKNN algorithms, integrating advanced optimizations such as machine learning-driven inference to supplant traditional heuristic scans, and improved distance computation methods to reduce computational overhead. Our extensive evaluations across diverse datasets demonstrate that simpler AKNN baselines often surpass more complex alternatives in terms of recall and latency. These findings challenge established beliefs about the necessity of algorithmic complexity for high performance. Furthermore, our results underscore existing challenges and illuminate future research opportunities. We have made the datasets and implementation methods available at: https://github.com/intellistream/candy.
Related papers
- No learning rates needed: Introducing SALSA -- Stable Armijo Line Search Adaptation [4.45108516823267]
We identify problems of current state-of-the-art line search methods, propose enhancements, and rigorously assess their effectiveness.
We evaluate these methods on orders of magnitude and more complex data domains than previously done.
Our work is publicly available in a Python package, which provides a simple Pytorch.
arXiv Detail & Related papers (2024-07-30T08:47:02Z) - State-Space Modeling in Long Sequence Processing: A Survey on Recurrence in the Transformer Era [59.279784235147254]
This survey provides an in-depth summary of the latest approaches that are based on recurrent models for sequential data processing.
The emerging picture suggests that there is room for thinking of novel routes, constituted by learning algorithms which depart from the standard Backpropagation Through Time.
arXiv Detail & Related papers (2024-06-13T12:51:22Z) - Switchable Decision: Dynamic Neural Generation Networks [98.61113699324429]
We propose a switchable decision to accelerate inference by dynamically assigning resources for each data instance.
Our method benefits from less cost during inference while keeping the same accuracy.
arXiv Detail & Related papers (2024-05-07T17:44:54Z) - Approximate Nearest Neighbour Search on Dynamic Datasets: An Investigation [20.409659920455955]
Approximate k-Nearest Neighbour (ANN) methods are often used for mining information and aiding machine learning on large scale high-dimensional datasets.
For applications with static datasets, runtime constraints and dataset properties can be used to empirically select an ANN method with suitable operating characteristics.
Traditional evaluation approaches do not consider the computational costs of updating the index structure, as well as the rate and size of index updates.
arXiv Detail & Related papers (2024-04-30T06:21:44Z) - ParlayANN: Scalable and Deterministic Parallel Graph-Based Approximate
Nearest Neighbor Search Algorithms [5.478671305092084]
We introduce ParlayANN, a library of deterministic and parallel graph-based approximate nearest neighbor search algorithms.
We develop novel parallel implementations for four state-of-the-art graph-based ANNS algorithms that scale to billion-scale datasets.
arXiv Detail & Related papers (2023-05-07T19:28:23Z) - Sparsity May Cry: Let Us Fail (Current) Sparse Neural Networks Together! [100.19080749267316]
"Sparsity May Cry" Benchmark (SMC-Bench) is a collection of carefully-curated 4 diverse tasks with 10 datasets.
SMC-Bench is designed to favor and encourage the development of more scalable and generalizable sparse algorithms.
arXiv Detail & Related papers (2023-03-03T18:47:21Z) - IM-IAD: Industrial Image Anomaly Detection Benchmark in Manufacturing [88.35145788575348]
Image anomaly detection (IAD) is an emerging and vital computer vision task in industrial manufacturing.
The lack of a uniform IM benchmark is hindering the development and usage of IAD methods in real-world applications.
We construct a comprehensive image anomaly detection benchmark (IM-IAD), which includes 19 algorithms on seven major datasets.
arXiv Detail & Related papers (2023-01-31T01:24:45Z) - Improved Algorithms for Neural Active Learning [74.89097665112621]
We improve the theoretical and empirical performance of neural-network(NN)-based active learning algorithms for the non-parametric streaming setting.
We introduce two regret metrics by minimizing the population loss that are more suitable in active learning than the one used in state-of-the-art (SOTA) related work.
arXiv Detail & Related papers (2022-10-02T05:03:38Z) - Reinforcement Learning for Datacenter Congestion Control [50.225885814524304]
Successful congestion control algorithms can dramatically improve latency and overall network throughput.
Until today, no such learning-based algorithms have shown practical potential in this domain.
We devise an RL-based algorithm with the aim of generalizing to different configurations of real-world datacenter networks.
We show that this scheme outperforms alternative popular RL approaches, and generalizes to scenarios that were not seen during training.
arXiv Detail & Related papers (2021-02-18T13:49:28Z) - Benchmarking Simulation-Based Inference [5.3898004059026325]
Recent advances in probabilistic modelling have led to a large number of simulation-based inference algorithms which do not require numerical evaluation of likelihoods.
We provide a benchmark with inference tasks and suitable performance metrics, with an initial selection of algorithms.
We found that the choice of performance metric is critical, that even state-of-the-art algorithms have substantial room for improvement, and that sequential estimation improves sample efficiency.
arXiv Detail & Related papers (2021-01-12T18:31:22Z) - Fast and stable MAP-Elites in noisy domains using deep grids [1.827510863075184]
Deep-Grid MAP-Elites is a variant of the MAP-Elites algorithm that uses an archive of similar previously encountered solutions to approximate the performance of a solution.
We show that this simple approach is significantly more resilient to noise on the behavioural descriptors, while achieving competitive performances in terms of fitness optimisation.
arXiv Detail & Related papers (2020-06-25T08:47:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.