Score-matching-based Structure Learning for Temporal Data on Networks
- URL: http://arxiv.org/abs/2412.07469v1
- Date: Tue, 10 Dec 2024 12:36:35 GMT
- Title: Score-matching-based Structure Learning for Temporal Data on Networks
- Authors: Hao Chen, Kai Yi, Lin Liu, Yu Guang Wang,
- Abstract summary: Causal discovery is a crucial initial step in establishing causality from empirical data and background knowledge.
Current score-matching-based algorithms are primarily designed to analyze independent and identically distributed (i.i.d.) data.
We have developed a new parent-finding subroutine for leaf nodes in DAGs, significantly accelerating the most time-consuming part of the process: the pruning step.
- Score: 17.166362605356074
- License:
- Abstract: Causal discovery is a crucial initial step in establishing causality from empirical data and background knowledge. Numerous algorithms have been developed for this purpose. Among them, the score-matching method has demonstrated superior performance across various evaluation metrics, particularly for the commonly encountered Additive Nonlinear Causal Models. However, current score-matching-based algorithms are primarily designed to analyze independent and identically distributed (i.i.d.) data. More importantly, they suffer from high computational complexity due to the pruning step required for handling dense Directed Acyclic Graphs (DAGs). To enhance the scalability of score matching, we have developed a new parent-finding subroutine for leaf nodes in DAGs, significantly accelerating the most time-consuming part of the process: the pruning step. This improvement results in an efficiency-lifted score matching algorithm, termed Parent Identification-based Causal structure learning for both i.i.d. and temporal data on networKs, or PICK. The new score-matching algorithm extends the scope of existing algorithms and can handle static and temporal data on networks with weak network interference. Our proposed algorithm can efficiently cope with increasingly complex datasets that exhibit spatial and temporal dependencies, commonly encountered in academia and industry. The proposed algorithm can accelerate score-matching-based methods while maintaining high accuracy in real-world applications.
Related papers
- An Efficient Outlier Detection Algorithm for Data Streaming [51.56874851156008]
Traditional outlier detection methods, such as the Local Outlier Factor (LOF) algorithm, struggle with real-time data.
We propose a novel approach to enhance the efficiency of LOF algorithms for online anomaly detection, named the Efficient Incremental LOF (EILOF) algorithm.
The EILOF algorithm not only significantly reduces computational costs, but also systematically improves detection accuracy when the number of additional points increases.
arXiv Detail & Related papers (2025-01-02T05:12:43Z) - A Full DAG Score-Based Algorithm for Learning Causal Bayesian Networks with Latent Confounders [0.0]
Causal Bayesian networks (CBN) are popular graphical probabilistic models that encode causal relations among variables.
This paper introduces the first fully score-based structure learning algorithm searching the space of DAGs that is capable of identifying the presence of some latent confounders.
arXiv Detail & Related papers (2024-08-20T20:25:56Z) - CANDY: A Benchmark for Continuous Approximate Nearest Neighbor Search with Dynamic Data Ingestion [8.036012885171166]
We introduce CANDY, a benchmark tailored for Continuous Approximate Nearest Neighbor Search with Dynamic Data Ingestion.
CANDY comprehensively assesses a wide range of AKNN algorithms, integrating advanced optimizations such as machine learning-driven inference.
Our evaluations across diverse datasets demonstrate that simpler AKNN baselines often surpass more complex alternatives in terms of recall and latency.
arXiv Detail & Related papers (2024-06-28T04:46:11Z) - Bioinspired Cortex-based Fast Codebook Generation [0.09449650062296822]
We introduce a feature extraction method inspired by sensory cortical networks in the brain.
Dubbed as bioinspired cortex, the algorithm provides convergence to features from streaming signals with superior computational efficiency.
We show herein the superior performance of the cortex model in clustering and vector quantization.
arXiv Detail & Related papers (2022-01-28T18:37:43Z) - Convolutional generative adversarial imputation networks for
spatio-temporal missing data in storm surge simulations [86.5302150777089]
Generative Adversarial Imputation Nets (GANs) and GAN-based techniques have attracted attention as unsupervised machine learning methods.
We name our proposed method as Con Conval Generative Adversarial Imputation Nets (Conv-GAIN)
arXiv Detail & Related papers (2021-11-03T03:50:48Z) - Accelerating Recursive Partition-Based Causal Structure Learning [4.357523892518871]
Recursive causal discovery algorithms provide good results by using Conditional Independent (CI) tests in smaller sub-problems.
This paper proposes a generic causal structure refinement strategy that can locate the undesired relations with a small number of CI-tests.
We then empirically evaluate its performance against the state-of-the-art algorithms in terms of solution quality and completion time in synthetic and real datasets.
arXiv Detail & Related papers (2021-02-23T08:28:55Z) - Towards Optimally Efficient Tree Search with Deep Learning [76.64632985696237]
This paper investigates the classical integer least-squares problem which estimates signals integer from linear models.
The problem is NP-hard and often arises in diverse applications such as signal processing, bioinformatics, communications and machine learning.
We propose a general hyper-accelerated tree search (HATS) algorithm by employing a deep neural network to estimate the optimal estimation for the underlying simplified memory-bounded A* algorithm.
arXiv Detail & Related papers (2021-01-07T08:00:02Z) - Fast Reinforcement Learning with Incremental Gaussian Mixture Models [0.0]
An online and incremental algorithm capable of learning from a single pass through data, called Incremental Gaussian Mixture Network (IGMN), was employed as a sample-efficient function approximator for the joint state and Q-values space.
Results are analyzed to explain the properties of the obtained algorithm, and it is observed that the use of the IGMN function approximator brings some important advantages to reinforcement learning in relation to conventional neural networks trained by gradient descent methods.
arXiv Detail & Related papers (2020-11-02T03:18:15Z) - A Constraint-Based Algorithm for the Structural Learning of
Continuous-Time Bayesian Networks [70.88503833248159]
We propose the first constraint-based algorithm for learning the structure of continuous-time Bayesian networks.
We discuss the different statistical tests and the underlying hypotheses used by our proposal to establish conditional independence.
arXiv Detail & Related papers (2020-07-07T07:34:09Z) - FedPD: A Federated Learning Framework with Optimal Rates and Adaptivity
to Non-IID Data [59.50904660420082]
Federated Learning (FL) has become a popular paradigm for learning from distributed data.
To effectively utilize data at different devices without moving them to the cloud, algorithms such as the Federated Averaging (FedAvg) have adopted a "computation then aggregation" (CTA) model.
arXiv Detail & Related papers (2020-05-22T23:07:42Z) - Second-Order Guarantees in Centralized, Federated and Decentralized
Nonconvex Optimization [64.26238893241322]
Simple algorithms have been shown to lead to good empirical results in many contexts.
Several works have pursued rigorous analytical justification for studying non optimization problems.
A key insight in these analyses is that perturbations play a critical role in allowing local descent algorithms.
arXiv Detail & Related papers (2020-03-31T16:54:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.