Deceptive Diffusion: Generating Synthetic Adversarial Examples
- URL: http://arxiv.org/abs/2406.19807v1
- Date: Fri, 28 Jun 2024 10:30:46 GMT
- Title: Deceptive Diffusion: Generating Synthetic Adversarial Examples
- Authors: Lucas Beerens, Catherine F. Higham, Desmond J. Higham,
- Abstract summary: We introduce the concept of deceptive diffusion -- training a generative AI model to produce adversarial images.
A traditional adversarial attack algorithm aims to perturb an existing image to induce a misclassificaton.
The deceptive diffusion model can create an arbitrary number of new, misclassified images that are not directly associated with training or test images.
- Score: 2.7309692684728617
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce the concept of deceptive diffusion -- training a generative AI model to produce adversarial images. Whereas a traditional adversarial attack algorithm aims to perturb an existing image to induce a misclassificaton, the deceptive diffusion model can create an arbitrary number of new, misclassified images that are not directly associated with training or test images. Deceptive diffusion offers the possibility of strengthening defence algorithms by providing adversarial training data at scale, including types of misclassification that are otherwise difficult to find. In our experiments, we also investigate the effect of training on a partially attacked data set. This highlights a new type of vulnerability for generative diffusion models: if an attacker is able to stealthily poison a portion of the training data, then the resulting diffusion model will generate a similar proportion of misleading outputs.
Related papers
- Adversarial Robustification via Text-to-Image Diffusion Models [56.37291240867549]
Adrial robustness has been conventionally believed as a challenging property to encode for neural networks.
We develop a scalable and model-agnostic solution to achieve adversarial robustness without using any data.
arXiv Detail & Related papers (2024-07-26T10:49:14Z) - Training Class-Imbalanced Diffusion Model Via Overlap Optimization [55.96820607533968]
Diffusion models trained on real-world datasets often yield inferior fidelity for tail classes.
Deep generative models, including diffusion models, are biased towards classes with abundant training images.
We propose a method based on contrastive learning to minimize the overlap between distributions of synthetic images for different classes.
arXiv Detail & Related papers (2024-02-16T16:47:21Z) - Adversarial Examples are Misaligned in Diffusion Model Manifolds [7.979892202477701]
This study is dedicated to the investigation of adversarial attacks through the lens of diffusion models.
Our focus lies in utilizing the diffusion model to detect and analyze the anomalies introduced by these attacks on images.
Results demonstrate a notable capacity to discriminate effectively between benign and attacked images.
arXiv Detail & Related papers (2024-01-12T15:29:21Z) - Adv-Diffusion: Imperceptible Adversarial Face Identity Attack via Latent
Diffusion Model [61.53213964333474]
We propose a unified framework Adv-Diffusion that can generate imperceptible adversarial identity perturbations in the latent space but not the raw pixel space.
Specifically, we propose the identity-sensitive conditioned diffusion generative model to generate semantic perturbations in the surroundings.
The designed adaptive strength-based adversarial perturbation algorithm can ensure both attack transferability and stealthiness.
arXiv Detail & Related papers (2023-12-18T15:25:23Z) - The Journey, Not the Destination: How Data Guides Diffusion Models [75.19694584942623]
Diffusion models trained on large datasets can synthesize photo-realistic images of remarkable quality and diversity.
We propose a framework that: (i) provides a formal notion of data attribution in the context of diffusion models, and (ii) allows us to counterfactually validate such attributions.
arXiv Detail & Related papers (2023-12-11T08:39:43Z) - Robust Classification via a Single Diffusion Model [37.46217654590878]
Robust Diffusion (RDC) is a generative classifier constructed from a pre-trained diffusion model to be adversarially robust.
RDC achieves $75.67%$ robust accuracy against various $ell_infty$ norm-bounded adaptive attacks with $epsilon_infty/255$ on CIFAR-10.
arXiv Detail & Related papers (2023-05-24T15:25:19Z) - Training Diffusion Models with Reinforcement Learning [82.29328477109826]
Diffusion models are trained with an approximation to the log-likelihood objective.
In this paper, we investigate reinforcement learning methods for directly optimizing diffusion models for downstream objectives.
We describe how posing denoising as a multi-step decision-making problem enables a class of policy gradient algorithms.
arXiv Detail & Related papers (2023-05-22T17:57:41Z) - Enhancing Targeted Attack Transferability via Diversified Weight Pruning [0.3222802562733786]
Malicious attackers can generate targeted adversarial examples by imposing human-imperceptible noise on images.
With cross-model transferable adversarial examples, the vulnerability of neural networks remains even if the model information is kept secret from the attacker.
Recent studies have shown the effectiveness of ensemble-based methods in generating transferable adversarial examples.
arXiv Detail & Related papers (2022-08-18T07:25:48Z) - Stylized Adversarial Defense [105.88250594033053]
adversarial training creates perturbation patterns and includes them in the training set to robustify the model.
We propose to exploit additional information from the feature space to craft stronger adversaries.
Our adversarial training approach demonstrates strong robustness compared to state-of-the-art defenses.
arXiv Detail & Related papers (2020-07-29T08:38:10Z) - Data-Free Adversarial Perturbations for Practical Black-Box Attack [25.44755251319056]
We present a data-free method for crafting adversarial perturbations that can fool a target model without any knowledge about the training data distribution.
Our method empirically shows that current deep learning models are still at risk even when the attackers do not have access to training data.
arXiv Detail & Related papers (2020-03-03T02:22:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.