Emotion Loss Attacking: Adversarial Attack Perception for Skeleton based on Multi-dimensional Features
- URL: http://arxiv.org/abs/2406.19815v1
- Date: Fri, 28 Jun 2024 10:45:37 GMT
- Title: Emotion Loss Attacking: Adversarial Attack Perception for Skeleton based on Multi-dimensional Features
- Authors: Feng Liu, Qing Xu, Qijian Zheng,
- Abstract summary: We propose a novel adversarial attack method to attack action recognizers for skeletal motions.
Our method systematically proposes a dynamic distance function to measure the difference between skeletal motions.
We are the first to prove the effectiveness of emotional features, and provide a new idea for measuring the distance between skeletal motions.
- Score: 6.241047489413293
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Adversarial attack on skeletal motion is a hot topic. However, existing researches only consider part of dynamic features when measuring distance between skeleton graph sequences, which results in poor imperceptibility. To this end, we propose a novel adversarial attack method to attack action recognizers for skeletal motions. Firstly, our method systematically proposes a dynamic distance function to measure the difference between skeletal motions. Meanwhile, we innovatively introduce emotional features for complementary information. In addition, we use Alternating Direction Method of Multipliers(ADMM) to solve the constrained optimization problem, which generates adversarial samples with better imperceptibility to deceive the classifiers. Experiments show that our method is effective on multiple action classifiers and datasets. When the perturbation magnitude measured by l norms is the same, the dynamic perturbations generated by our method are much lower than that of other methods. What's more, we are the first to prove the effectiveness of emotional features, and provide a new idea for measuring the distance between skeletal motions.
Related papers
- Continual Imitation Learning for Prosthetic Limbs [0.7922558880545526]
Motorized bionic limbs offer promise, but their utility depends on mimicking the evolving synergy of human movement in various settings.
We present a novel model for bionic prostheses' application that leverages camera-based motion capture and wearable sensor data.
We propose a model that can multitask, adapt continually, anticipate movements, and refine locomotion.
arXiv Detail & Related papers (2024-05-02T09:22:54Z) - PACE: Data-Driven Virtual Agent Interaction in Dense and Cluttered
Environments [69.03289331433874]
We present PACE, a novel method for modifying motion-captured virtual agents to interact with and move throughout dense, cluttered 3D scenes.
Our approach changes a given motion sequence of a virtual agent as needed to adjust to the obstacles and objects in the environment.
We compare our method with prior motion generating techniques and highlight the benefits of our method with a perceptual study and physical plausibility metrics.
arXiv Detail & Related papers (2023-03-24T19:49:08Z) - Improving Adversarial Robustness to Sensitivity and Invariance Attacks
with Deep Metric Learning [80.21709045433096]
A standard method in adversarial robustness assumes a framework to defend against samples crafted by minimally perturbing a sample.
We use metric learning to frame adversarial regularization as an optimal transport problem.
Our preliminary results indicate that regularizing over invariant perturbations in our framework improves both invariant and sensitivity defense.
arXiv Detail & Related papers (2022-11-04T13:54:02Z) - Contact-Aware Retargeting of Skinned Motion [49.71236739408685]
This paper introduces a motion estimation method that preserves self-contacts and prevents interpenetration.
The method identifies self-contacts and ground contacts in the input motion, and optimize the motion to apply to the output skeleton.
In experiments, our results quantitatively outperform previous methods and we conduct a user study where our retargeted motions are rated as higher-quality than those produced by recent works.
arXiv Detail & Related papers (2021-09-15T17:05:02Z) - Adversarial Bone Length Attack on Action Recognition [4.9631159466100305]
We show that adversarial attacks can be performed on skeleton-based action recognition models.
Specifically, we restrict the perturbations to the lengths of the skeleton's bones, which allows an adversary to manipulate only approximately 30 effective dimensions.
arXiv Detail & Related papers (2021-09-13T09:59:44Z) - A Hamiltonian Monte Carlo Method for Probabilistic Adversarial Attack
and Learning [122.49765136434353]
We present an effective method, called Hamiltonian Monte Carlo with Accumulated Momentum (HMCAM), aiming to generate a sequence of adversarial examples.
We also propose a new generative method called Contrastive Adversarial Training (CAT), which approaches equilibrium distribution of adversarial examples.
Both quantitative and qualitative analysis on several natural image datasets and practical systems have confirmed the superiority of the proposed algorithm.
arXiv Detail & Related papers (2020-10-15T16:07:26Z) - Adversarial robustness via stochastic regularization of neural
activation sensitivity [24.02105949163359]
We suggest a novel defense mechanism that simultaneously addresses both defense goals.
We flatten the gradients of the loss surface, making adversarial examples harder to find.
In addition, we push the decision away from correctly classified inputs by leveraging Jacobian regularization.
arXiv Detail & Related papers (2020-09-23T19:31:55Z) - Towards Understanding the Adversarial Vulnerability of Skeleton-based
Action Recognition [133.35968094967626]
Skeleton-based action recognition has attracted increasing attention due to its strong adaptability to dynamic circumstances.
With the help of deep learning techniques, it has also witnessed substantial progress and currently achieved around 90% accuracy in benign environment.
Research on the vulnerability of skeleton-based action recognition under different adversarial settings remains scant.
arXiv Detail & Related papers (2020-05-14T17:12:52Z) - Motion-Excited Sampler: Video Adversarial Attack with Sparked Prior [63.11478060678794]
We propose an effective motion-excited sampler to obtain motion-aware noise prior.
By using the sparked prior in gradient estimation, we can successfully attack a variety of video classification models with fewer number of queries.
arXiv Detail & Related papers (2020-03-17T10:54:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.