Modeling Human Skeleton Joint Dynamics for Fall Detection
- URL: http://arxiv.org/abs/2503.06938v1
- Date: Mon, 10 Mar 2025 05:35:56 GMT
- Title: Modeling Human Skeleton Joint Dynamics for Fall Detection
- Authors: Sania Zahan, Ghulam Mubashar Hassan, Ajmal Mian,
- Abstract summary: Fall detection from video streams is not an attractive option for real-life applications due to privacy issues.<n>Key points on the body such as skeleton joints, can convey significant information about motion dynamics.<n>We propose an efficient graph convolution network model that exploitstemporal joint dependencies and dynamics of human skeleton joints for accurate fall detection.
- Score: 25.57448683000322
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The increasing pace of population aging calls for better care and support systems. Falling is a frequent and critical problem for elderly people causing serious long-term health issues. Fall detection from video streams is not an attractive option for real-life applications due to privacy issues. Existing methods try to resolve this issue by using very low-resolution cameras or video encryption. However, privacy cannot be ensured completely with such approaches. Key points on the body, such as skeleton joints, can convey significant information about motion dynamics and successive posture changes which are crucial for fall detection. Skeleton joints have been explored for feature extraction but with image recognition models that ignore joint dependency across frames which is important for the classification of actions. Moreover, existing models are over-parameterized or evaluated on small datasets with very few activity classes. We propose an efficient graph convolution network model that exploits spatio-temporal joint dependencies and dynamics of human skeleton joints for accurate fall detection. Our method leverages dynamic representation with robust concurrent spatio-temporal characteristics of skeleton joints. We performed extensive experiments on three large-scale datasets. With a significantly smaller model size than most existing methods, our proposed method achieves state-of-the-art results on the large scale NTU datasets.
Related papers
- SDFA: Structure Aware Discriminative Feature Aggregation for Efficient Human Fall Detection in Video [25.57448683000322]
Older people are susceptible to fall due to instability in posture and deteriorating health.<n>We propose a fall detection model, coined SDFA, based on human skeletons extracted from low-resolution videos.<n>Our model captures discriminative structural displacements and motion trends using unified joint and motion features projected onto a shared high dimensional space.
arXiv Detail & Related papers (2025-03-10T07:46:00Z) - One-Shot Action Recognition via Multi-Scale Spatial-Temporal Skeleton
Matching [77.6989219290789]
One-shot skeleton action recognition aims to learn a skeleton action recognition model with a single training sample.
This paper presents a novel one-shot skeleton action recognition technique that handles skeleton action recognition via multi-scale spatial-temporal feature matching.
arXiv Detail & Related papers (2023-07-14T11:52:10Z) - Overcoming Topology Agnosticism: Enhancing Skeleton-Based Action
Recognition through Redefined Skeletal Topology Awareness [24.83836008577395]
Graph Convolutional Networks (GCNs) have long defined the state-of-the-art in skeleton-based action recognition.
They tend to optimize the adjacency matrix jointly with the model weights.
This process causes a gradual decay of bone connectivity data, culminating in a model indifferent to the very topology it sought to map.
We propose an innovative pathway that encodes bone connectivity by harnessing the power of graph distances.
arXiv Detail & Related papers (2023-05-19T06:40:12Z) - View-Invariant Skeleton-based Action Recognition via Global-Local
Contrastive Learning [15.271862140292837]
We propose a new view-invariant representation learning approach, without any manual action labeling, for skeleton-based human action recognition.
We leverage the multi-view skeleton data simultaneously taken for the same person in the network training, by maximizing the mutual information between the representations extracted from different views.
We show that the proposed method is robust to the view difference of the input skeleton data and significantly boosts the performance of unsupervised skeleton-based human action methods.
arXiv Detail & Related papers (2022-09-23T15:00:57Z) - A Two-stream Convolutional Network for Musculoskeletal and Neurological
Disorders Prediction [14.003588854239544]
Musculoskeletal and neurological disorders are the most common causes of walking problems among older people.
Recent deep learning-based methods have shown promising results for automated analysis.
arXiv Detail & Related papers (2022-08-18T14:32:16Z) - Learning from Temporal Spatial Cubism for Cross-Dataset Skeleton-based
Action Recognition [88.34182299496074]
Action labels are only available on a source dataset, but unavailable on a target dataset in the training stage.
We utilize a self-supervision scheme to reduce the domain shift between two skeleton-based action datasets.
By segmenting and permuting temporal segments or human body parts, we design two self-supervised learning classification tasks.
arXiv Detail & Related papers (2022-07-17T07:05:39Z) - Temporal Relevance Analysis for Video Action Models [70.39411261685963]
We first propose a new approach to quantify the temporal relationships between frames captured by CNN-based action models.
We then conduct comprehensive experiments and in-depth analysis to provide a better understanding of how temporal modeling is affected.
arXiv Detail & Related papers (2022-04-25T19:06:48Z) - Revisiting Skeleton-based Action Recognition [107.08112310075114]
PoseC3D is a new approach to skeleton-based action recognition, which relies on a 3D heatmap instead stack a graph sequence as the base representation of human skeletons.
On four challenging datasets, PoseC3D consistently obtains superior performance, when used alone on skeletons and in combination with the RGB modality.
arXiv Detail & Related papers (2021-04-28T06:32:17Z) - Graph-based Normalizing Flow for Human Motion Generation and
Reconstruction [20.454140530081183]
We propose a probabilistic generative model to synthesize and reconstruct long horizon motion sequences conditioned on past information and control signals.
We evaluate the models on a mixture of motion capture datasets of human locomotion with foot-step and bone-length analysis.
arXiv Detail & Related papers (2021-04-07T09:51:15Z) - Modeling Shared Responses in Neuroimaging Studies through MultiView ICA [94.31804763196116]
Group studies involving large cohorts of subjects are important to draw general conclusions about brain functional organization.
We propose a novel MultiView Independent Component Analysis model for group studies, where data from each subject are modeled as a linear combination of shared independent sources plus noise.
We demonstrate the usefulness of our approach first on fMRI data, where our model demonstrates improved sensitivity in identifying common sources among subjects.
arXiv Detail & Related papers (2020-06-11T17:29:53Z) - Anatomy-aware 3D Human Pose Estimation with Bone-based Pose
Decomposition [92.99291528676021]
Instead of directly regressing the 3D joint locations, we decompose the task into bone direction prediction and bone length prediction.
Our motivation is the fact that the bone lengths of a human skeleton remain consistent across time.
Our full model outperforms the previous best results on Human3.6M and MPI-INF-3DHP datasets.
arXiv Detail & Related papers (2020-02-24T15:49:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.