論文の概要: StreamMOTP: Streaming and Unified Framework for Joint 3D Multi-Object Tracking and Trajectory Prediction
- arxiv url: http://arxiv.org/abs/2406.19844v1
- Date: Fri, 28 Jun 2024 11:35:35 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-01 17:00:05.720757
- Title: StreamMOTP: Streaming and Unified Framework for Joint 3D Multi-Object Tracking and Trajectory Prediction
- Title(参考訳): StreamMOTP: 複合3次元多目的追跡と軌道予測のためのストリーミングと統一フレームワーク
- Authors: Jiaheng Zhuang, Guoan Wang, Siyu Zhang, Xiyang Wang, Hangning Zhou, Ziyao Xu, Chi Zhang, Zhiheng Li,
- Abstract要約: 我々は3次元多目的追跡・軌道予測(StreamMOTP)のためのストリーミング統合フレームワークを提案する。
ストリーミング方式でモデルを構築し、メモリバンクを利用して、追跡対象の長期潜伏機能をより効果的に保存し、活用する。
また,予測トラジェクタの品質と一貫性を2ストリーム予測器で改善する。
- 参考スコア(独自算出の注目度): 22.29257945966914
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: 3D multi-object tracking and trajectory prediction are two crucial modules in autonomous driving systems. Generally, the two tasks are handled separately in traditional paradigms and a few methods have started to explore modeling these two tasks in a joint manner recently. However, these approaches suffer from the limitations of single-frame training and inconsistent coordinate representations between tracking and prediction tasks. In this paper, we propose a streaming and unified framework for joint 3D Multi-Object Tracking and trajectory Prediction (StreamMOTP) to address the above challenges. Firstly, we construct the model in a streaming manner and exploit a memory bank to preserve and leverage the long-term latent features for tracked objects more effectively. Secondly, a relative spatio-temporal positional encoding strategy is introduced to bridge the gap of coordinate representations between the two tasks and maintain the pose-invariance for trajectory prediction. Thirdly, we further improve the quality and consistency of predicted trajectories with a dual-stream predictor. We conduct extensive experiments on popular nuSences dataset and the experimental results demonstrate the effectiveness and superiority of StreamMOTP, which outperforms previous methods significantly on both tasks. Furthermore, we also prove that the proposed framework has great potential and advantages in actual applications of autonomous driving.
- Abstract(参考訳): 3D多目的追跡と軌道予測は、自律走行システムにおいて2つの重要なモジュールである。
一般に、2つのタスクは従来のパラダイムで別々に処理され、最近これらの2つのタスクを共同でモデリングする方法がいくつか検討され始めている。
しかし、これらのアプローチは、単一フレームトレーニングの限界と、追跡タスクと予測タスクの間の一貫性のない座標表現に悩まされている。
本稿では,これらの課題に対処する3次元多目的追跡・軌道予測(StreamMOTP)のためのストリーミング統合フレームワークを提案する。
まず、このモデルを構築し、メモリバンクを利用して、追跡対象の長期潜伏機能をより効果的に保存し、活用する。
次に、2つのタスク間の座標表現のギャップを埋め、軌道予測のためのポーズ不変性を維持するために、相対時空間位置符号化戦略を導入する。
第3に,予測軌道の品質と整合性をさらに向上させる。
本稿では,一般的な nuSences データセットに関する広範な実験を行い,StreamMOTP の有効性と優位性を実証した。
さらに,提案手法が自律運転の実適用において大きな可能性と優位性を持っていることも証明した。
関連論文リスト
- DeTra: A Unified Model for Object Detection and Trajectory Forecasting [68.85128937305697]
提案手法は,2つのタスクの結合を軌道修正問題として定式化する。
この統合タスクに対処するために、オブジェクトの存在, ポーズ, マルチモーダルな将来の振る舞いを推測する精細化変換器を設計する。
実験では、我々のモデルはArgoverse 2 Sensor and Openデータセットの最先端性よりも優れています。
論文 参考訳(メタデータ) (2024-06-06T18:12:04Z) - Deciphering Movement: Unified Trajectory Generation Model for Multi-Agent [53.637837706712794]
任意の軌道をマスク入力として処理する統一軌道生成モデルUniTrajを提案する。
具体的には,空間特徴抽出のためのトランスフォーマーエンコーダ内に埋め込まれたゴースト空間マスキング(GSM)モジュールを導入する。
バスケットボール-U,サッカー-U,サッカー-Uの3つの実用的なスポーツゲームデータセットをベンチマークして評価を行った。
論文 参考訳(メタデータ) (2024-05-27T22:15:23Z) - Modeling Continuous Motion for 3D Point Cloud Object Tracking [54.48716096286417]
本稿では,各トラックレットを連続ストリームとみなす新しいアプローチを提案する。
各タイムスタンプでは、現在のフレームだけがネットワークに送られ、メモリバンクに格納された複数フレームの履歴機能と相互作用する。
頑健な追跡のためのマルチフレーム機能の利用性を高めるために,コントラッシブシーケンス強化戦略を提案する。
論文 参考訳(メタデータ) (2023-03-14T02:58:27Z) - Joint Feature Learning and Relation Modeling for Tracking: A One-Stream
Framework [76.70603443624012]
特徴学習と関係モデリングを統合した新しい一ストリーム追跡(OSTrack)フレームワークを提案する。
このようにして、相互誘導により識別的目標指向特徴を動的に抽出することができる。
OSTrackは、複数のベンチマークで最先端のパフォーマンスを実現しており、特に、ワンショットトラッキングベンチマークのGOT-10kでは印象的な結果を示している。
論文 参考訳(メタデータ) (2022-03-22T18:37:11Z) - Divide-and-Conquer for Lane-Aware Diverse Trajectory Prediction [71.97877759413272]
軌道予測は、自動運転車が行動を計画し実行するための安全クリティカルなツールです。
近年の手法は,WTAやベスト・オブ・マニーといったマルチコース学習の目標を用いて,強力なパフォーマンスを実現している。
我々の研究は、軌道予測、学習出力、そして運転知識を使って制約を課すことによるより良い予測における2つの重要な課題に対処する。
論文 参考訳(メタデータ) (2021-04-16T17:58:56Z) - Spatio-Temporal Graph Dual-Attention Network for Multi-Agent Prediction
and Tracking [23.608125748229174]
異種エージェントを含む多エージェント軌道予測のための汎用生成ニューラルシステムを提案する。
提案システムは, 軌道予測のための3つのベンチマークデータセット上で評価される。
論文 参考訳(メタデータ) (2021-02-18T02:25:35Z) - End-to-End 3D Multi-Object Tracking and Trajectory Forecasting [34.68114553744956]
3次元MOTと軌道予測の統一解を提案する。
グラフニューラルネットを導入して特徴相互作用技術を採用する。
また,予測トラジェクトリの品質と多様性を向上させるために,多様性サンプリング機能を利用する。
論文 参考訳(メタデータ) (2020-08-25T16:54:46Z) - SMART: Simultaneous Multi-Agent Recurrent Trajectory Prediction [72.37440317774556]
本稿では,将来の軌道予測における2つの重要な課題に対処する手法を提案する。
エージェントの数に関係なく、トレーニングデータと予測と一定時間の推測の両方において、マルチモーダリティ。
論文 参考訳(メタデータ) (2020-07-26T08:17:10Z) - PTP: Parallelized Tracking and Prediction with Graph Neural Networks and
Diversity Sampling [34.68114553744956]
多物体追跡(MOT)と軌跡予測は、現代の3次元知覚システムにおいて2つの重要な要素である。
エージェントインタラクションの共有特徴表現を学習するための並列化フレームワークを提案する。
社会的に認識された特徴学習と多様性サンプリングを用いた手法は,3次元MOTにおける新しい最先端性能と軌道予測を実現する。
論文 参考訳(メタデータ) (2020-03-17T17:53:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。