FootBots: A Transformer-based Architecture for Motion Prediction in Soccer
- URL: http://arxiv.org/abs/2406.19852v1
- Date: Fri, 28 Jun 2024 11:49:59 GMT
- Title: FootBots: A Transformer-based Architecture for Motion Prediction in Soccer
- Authors: Guillem Capellera, Luis Ferraz, Antonio Rubio, Antonio Agudo, Francesc Moreno-Noguer,
- Abstract summary: FootBots is an encoder-decoder transformer-based architecture addressing motion prediction and conditioned motion prediction.
FootBots captures temporal and social dynamics using set attention blocks and multi-attention block decoder.
Empirical results on real soccer data demonstrate that FootBots outperforms baselines in motion prediction.
- Score: 28.32714256545306
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Motion prediction in soccer involves capturing complex dynamics from player and ball interactions. We present FootBots, an encoder-decoder transformer-based architecture addressing motion prediction and conditioned motion prediction through equivariance properties. FootBots captures temporal and social dynamics using set attention blocks and multi-attention block decoder. Our evaluation utilizes two datasets: a real soccer dataset and a tailored synthetic one. Insights from the synthetic dataset highlight the effectiveness of FootBots' social attention mechanism and the significance of conditioned motion prediction. Empirical results on real soccer data demonstrate that FootBots outperforms baselines in motion prediction and excels in conditioned tasks, such as predicting the players based on the ball position, predicting the offensive (defensive) team based on the ball and the defensive (offensive) team, and predicting the ball position based on all players. Our evaluation connects quantitative and qualitative findings. https://youtu.be/9kaEkfzG3L8
Related papers
- Pose2Trajectory: Using Transformers on Body Pose to Predict Tennis Player's Trajectory [6.349503549199403]
We propose Pose2Trajectory, which predicts a tennis player's future trajectory as a sequence derived from their body joints' data and ball position.
We use encoder-decoder Transformer architecture trained on the joints and trajectory information of the players with ball positions.
We generate a high-quality dataset from multiple videos to assist tennis player movement prediction using object detection and human pose estimation methods.
arXiv Detail & Related papers (2024-11-07T07:50:58Z) - MatchTime: Towards Automatic Soccer Game Commentary Generation [52.431010585268865]
We consider constructing an automatic soccer game commentary model to improve the audiences' viewing experience.
First, observing the prevalent video-text misalignment in existing datasets, we manually annotate timestamps for 49 matches.
Second, we propose a multi-modal temporal alignment pipeline to automatically correct and filter the existing dataset at scale.
Third, based on our curated dataset, we train an automatic commentary generation model, named MatchVoice.
arXiv Detail & Related papers (2024-06-26T17:57:25Z) - Exploring 3D Human Pose Estimation and Forecasting from the Robot's Perspective: The HARPER Dataset [52.22758311559]
We introduce HARPER, a novel dataset for 3D body pose estimation and forecast in dyadic interactions between users and Spot.
The key-novelty is the focus on the robot's perspective, i.e., on the data captured by the robot's sensors.
The scenario underlying HARPER includes 15 actions, of which 10 involve physical contact between the robot and users.
arXiv Detail & Related papers (2024-03-21T14:53:50Z) - Engineering Features to Improve Pass Prediction in Soccer Simulation 2D
Games [0.0]
Soccer Simulation 2D (SS2D) is a simulation of a real soccer game in two dimensions.
We have tried to address the modeling of passing behavior of soccer 2D players using Deep Neural Networks (DNN) and Random Forest (RF)
We evaluate the trained models' performance playing against 6 top teams of RoboCup 2019 that have distinctive playing strategies.
arXiv Detail & Related papers (2024-01-07T08:01:25Z) - Classifying Soccer Ball-on-Goal Position Through Kicker Shooting Action [1.3887779684720984]
This research addresses whether the ball's direction after a soccer free-kick can be accurately predicted solely by observing the shooter's kicking technique.
Our approach involves utilizing neural networks to develop a model that integrates Human Action Recognition (HAR) embeddings with contextual information.
Our results reveal 69.1% accuracy when considering two primary BoGP classes: right and left.
arXiv Detail & Related papers (2023-12-23T12:11:38Z) - Passing Heatmap Prediction Based on Transformer Model and Tracking Data [0.0]
This research presents a novel deep-learning network architecture which is capable to predict the potential end location of passes.
Once analysed more than 28,000 pass events, a robust prediction can be achieved with more than 0.7 Top-1 accuracy.
And based on the prediction, a better understanding of the pitch control and pass option could be reached to measure players' off-ball movement contribution to defensive performance.
arXiv Detail & Related papers (2023-09-04T11:14:22Z) - Robot Learning with Sensorimotor Pre-training [98.7755895548928]
We present a self-supervised sensorimotor pre-training approach for robotics.
Our model, called RPT, is a Transformer that operates on sequences of sensorimotor tokens.
We find that sensorimotor pre-training consistently outperforms training from scratch, has favorable scaling properties, and enables transfer across different tasks, environments, and robots.
arXiv Detail & Related papers (2023-06-16T17:58:10Z) - Evaluation of creating scoring opportunities for teammates in soccer via
trajectory prediction [7.688133652295848]
We evaluate players who create off-ball scoring opportunities by comparing actual movements with the reference movements generated via trajectory prediction.
For verification, we examined the relationship with the annual salary, the goals, and the rating in the game by experts for all games of a team in a professional soccer league in a year.
Our results suggest the effectiveness of the proposed method as an indicator for a player without the ball to create a scoring chance for teammates.
arXiv Detail & Related papers (2022-06-04T03:58:37Z) - SoccerNet-Tracking: Multiple Object Tracking Dataset and Benchmark in
Soccer Videos [62.686484228479095]
We propose a novel dataset for multiple object tracking composed of 200 sequences of 30s each.
The dataset is fully annotated with bounding boxes and tracklet IDs.
Our analysis shows that multiple player, referee and ball tracking in soccer videos is far from being solved.
arXiv Detail & Related papers (2022-04-14T12:22:12Z) - Future Frame Prediction for Robot-assisted Surgery [57.18185972461453]
We propose a ternary prior guided variational autoencoder (TPG-VAE) model for future frame prediction in robotic surgical video sequences.
Besides content distribution, our model learns motion distribution, which is novel to handle the small movements of surgical tools.
arXiv Detail & Related papers (2021-03-18T15:12:06Z) - Game Plan: What AI can do for Football, and What Football can do for AI [83.79507996785838]
Predictive and prescriptive football analytics require new developments and progress at the intersection of statistical learning, game theory, and computer vision.
We illustrate that football analytics is a game changer of tremendous value, in terms of not only changing the game of football itself, but also in terms of what this domain can mean for the field of AI.
arXiv Detail & Related papers (2020-11-18T10:26:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.