論文の概要: Detecting Subtle Differences between Human and Model Languages Using Spectrum of Relative Likelihood
- arxiv url: http://arxiv.org/abs/2406.19874v2
- Date: Wed, 09 Oct 2024 09:36:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-10 14:30:04.158718
- Title: Detecting Subtle Differences between Human and Model Languages Using Spectrum of Relative Likelihood
- Title(参考訳): 相対的類似度スペクトルを用いた人間とモデル言語間の部分差の検出
- Authors: Yang Xu, Yu Wang, Hao An, Zhichen Liu, Yongyuan Li,
- Abstract要約: 本研究は、絶対値ではなく相対的確率値を用いることにより、新たな視点を提供する。
本稿では,教師型と教師型という2つの分類法を用いた検出手法を提案する。
また,人間の言語とモデル言語との微妙な差異を明らかにし,心理言語学研究の理論的ルーツを見出すことができる。
- 参考スコア(独自算出の注目度): 5.404146472517001
- License:
- Abstract: Human and model-generated texts can be distinguished by examining the magnitude of likelihood in language. However, it is becoming increasingly difficult as language model's capabilities of generating human-like texts keep evolving. This study provides a new perspective by using the relative likelihood values instead of absolute ones, and extracting useful features from the spectrum-view of likelihood for the human-model text detection task. We propose a detection procedure with two classification methods, supervised and heuristic-based, respectively, which results in competitive performances with previous zero-shot detection methods and a new state-of-the-art on short-text detection. Our method can also reveal subtle differences between human and model languages, which find theoretical roots in psycholinguistics studies. Our code is available at https://github.com/CLCS-SUSTech/FourierGPT
- Abstract(参考訳): 人間とモデル生成されたテキストは、言語における可能性の大きさを調べることで区別することができる。
しかし、言語モデルが人間のようなテキストを生成する能力が進化し続けるにつれて、ますます困難になりつつある。
本研究は, 絶対値ではなく相対的確率値を用いて新たな視点を提供し, 人間のモデルテキスト検出タスクのスペクトル的可能性から有用な特徴を抽出する。
教師付きとヒューリスティックに基づく2つの分類手法による検出手法を提案する。これにより,従来のゼロショット検出法と,ショートテキスト検出における新たな最先端技術との競合性能が得られる。
また,人間の言語とモデル言語との微妙な差異を明らかにし,心理言語学研究の理論的ルーツを見出すことができる。
私たちのコードはhttps://github.com/CLCS-SUSTech/FourierGPTで利用可能です。
関連論文リスト
- Detecting Machine-Generated Long-Form Content with Latent-Space Variables [54.07946647012579]
既存のゼロショット検出器は主に、現実世界のドメインシフトに弱いトークンレベルの分布に焦点を当てている。
本稿では,イベント遷移などの抽象的要素を機械対人文検出の鍵となる要因として組み込んだ,より堅牢な手法を提案する。
論文 参考訳(メタデータ) (2024-10-04T18:42:09Z) - Who Writes the Review, Human or AI? [0.36498648388765503]
本研究では,AIによる書評と人間による書評を正確に区別する手法を提案する。
提案手法は移動学習を利用して,異なるトピック間で生成したテキストを識別する。
実験の結果、元のテキストのソースを検出でき、精度96.86%に達することが示されている。
論文 参考訳(メタデータ) (2024-05-30T17:38:44Z) - Exploring the Potential of Large Foundation Models for Open-Vocabulary HOI Detection [9.788417605537965]
条件付き多レベルデコードと細粒度セマンティックエンハンスメントを備えた新しいエンドツーエンドオープン語彙HOI検出フレームワークを提案する。
提案手法は,開語彙HOI検出の最先端化を実現する。
論文 参考訳(メタデータ) (2024-04-09T10:27:22Z) - Pixel Sentence Representation Learning [67.4775296225521]
本研究では,視覚表現学習プロセスとして,文レベルのテキスト意味論の学習を概念化する。
タイポスや単語順シャッフルのような視覚的に接地されたテキスト摂動法を採用し、人間の認知パターンに共鳴し、摂動を連続的に認識できるようにする。
我々のアプローチは、大規模に教師なしのトピックアライメントトレーニングと自然言語推論監督によってさらに強化されている。
論文 参考訳(メタデータ) (2024-02-13T02:46:45Z) - Few-Shot Detection of Machine-Generated Text using Style Representations [4.326503887981912]
人間の文章を巧みに模倣する言語モデルは、虐待のかなりのリスクを負う。
そこで本研究では,人間が作成したテキストから推定した書体スタイルの表現を活用することを提案する。
また,人間と機械作家の区別にも有効であることがわかった。
論文 参考訳(メタデータ) (2024-01-12T17:26:51Z) - DNA-GPT: Divergent N-Gram Analysis for Training-Free Detection of
GPT-Generated Text [82.5469544192645]
ダイバージェントN-Gram解析(DNA-GPT)と呼ばれる新しいトレーニング不要検出手法を提案する。
元の部分と新しい部分の違いをN-gram解析により解析することにより,機械生成テキストと人文テキストの分布に顕著な相違が明らかになった。
その結果, ゼロショットアプローチは, 人文とGPT生成テキストの区別において, 最先端の性能を示すことがわかった。
論文 参考訳(メタデータ) (2023-05-27T03:58:29Z) - MAGE: Machine-generated Text Detection in the Wild [82.70561073277801]
大規模言語モデル(LLM)は人間レベルのテキスト生成を実現し、効果的なAI生成テキスト検出の必要性を強調している。
我々は、異なるLLMによって生成される多様な人文やテキストからテキストを収集することで、包括的なテストベッドを構築する。
問題にもかかわらず、トップパフォーマンス検出器は、新しいLCMによって生成された86.54%のドメイン外のテキストを識別することができ、アプリケーションシナリオの実現可能性を示している。
論文 参考訳(メタデータ) (2023-05-22T17:13:29Z) - Real or Fake Text?: Investigating Human Ability to Detect Boundaries
Between Human-Written and Machine-Generated Text [23.622347443796183]
我々は、テキストが人間の書き起こしから始まり、最先端のニューラルネットワークモデルによって生成されるようになる、より現実的な状況について研究する。
この課題でアノテータはしばしば苦労するが、アノテータのスキルにはかなりのばらつきがあり、適切なインセンティブが与えられると、アノテータは時間とともに改善できることを示す。
論文 参考訳(メタデータ) (2022-12-24T06:40:25Z) - A Comparative Study on Textual Saliency of Styles from Eye Tracking,
Annotations, and Language Models [21.190423578990824]
我々は、スタイリスティックテキストの人間の処理のための視線追跡データセットである eyeStyliency を提示する。
収集したアイデータセットを用いて,テキスト上でのサリエンシスコアを導出する様々な手法を開発した。
視線追跡データはユニークですが、人間のアノテーションとモデルに基づく重要度スコアの両方と交差しています。
論文 参考訳(メタデータ) (2022-12-19T21:50:36Z) - Mechanisms for Handling Nested Dependencies in Neural-Network Language
Models and Humans [75.15855405318855]
我々は,「深層学習」手法で訓練された現代人工ニューラルネットワークが,人間の文処理の中心的な側面を模倣するかどうかを検討した。
ネットワークは、大きなコーパスで次の単語を予測するためにのみ訓練されたが、分析の結果、局所的および長距離の構文合意をうまく処理する特別なユニットが出現した。
我々は,複数の名詞の単数/複数状態における体系的な変化を伴う文中の数一致の違反を人間が検出する行動実験において,モデルの予測を検証した。
論文 参考訳(メタデータ) (2020-06-19T12:00:05Z) - Limits of Detecting Text Generated by Large-Scale Language Models [65.46403462928319]
誤情報キャンペーンで使用される可能性があるため、長く一貫性のあるテキストを生成できる大規模な言語モデルが危険であると考える者もいる。
ここでは、仮説テスト問題として大規模言語モデル出力検出を定式化し、テキストを真あるいは生成されたものと分類する。
論文 参考訳(メタデータ) (2020-02-09T19:53:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。