A generative framework to bridge data-driven models and scientific theories in language neuroscience
- URL: http://arxiv.org/abs/2410.00812v1
- Date: Tue, 1 Oct 2024 15:57:48 GMT
- Title: A generative framework to bridge data-driven models and scientific theories in language neuroscience
- Authors: Richard Antonello, Chandan Singh, Shailee Jain, Aliyah Hsu, Jianfeng Gao, Bin Yu, Alexander Huth,
- Abstract summary: We present generative explanation-mediated validation, a framework for generating concise explanations of language selectivity in the brain.
We show that explanatory accuracy is closely related to the predictive power and stability of the underlying statistical models.
- Score: 84.76462599023802
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Representations from large language models are highly effective at predicting BOLD fMRI responses to language stimuli. However, these representations are largely opaque: it is unclear what features of the language stimulus drive the response in each brain area. We present generative explanation-mediated validation, a framework for generating concise explanations of language selectivity in the brain and then validating those explanations in follow-up experiments that use synthetic stimuli. This approach is successful at explaining selectivity both in individual voxels and cortical regions of interest (ROIs).We show that explanatory accuracy is closely related to the predictive power and stability of the underlying statistical models. These results demonstrate that LLMs can be used to bridge the widening gap between data-driven models and formal scientific theories.
Related papers
- Don't Cut Corners: Exact Conditions for Modularity in Biologically Inspired Representations [52.48094670415497]
We develop a theory of when biologically inspired representations modularise with respect to source variables (sources)
We derive necessary and sufficient conditions on a sample of sources that determine whether the neurons in an optimal biologically-inspired linear autoencoder modularise.
Our theory applies to any dataset, extending far beyond the case of statistical independence studied in previous work.
arXiv Detail & Related papers (2024-10-08T17:41:37Z) - Investigating the Timescales of Language Processing with EEG and Language Models [0.0]
This study explores the temporal dynamics of language processing by examining the alignment between word representations from a pre-trained language model and EEG data.
Using a Temporal Response Function (TRF) model, we investigate how neural activity corresponds to model representations across different layers.
Our analysis reveals patterns in TRFs from distinct layers, highlighting varying contributions to lexical and compositional processing.
arXiv Detail & Related papers (2024-06-28T12:49:27Z) - Brain-Like Language Processing via a Shallow Untrained Multihead Attention Network [16.317199232071232]
Large Language Models (LLMs) have been shown to be effective models of the human language system.
In this work, we investigate the key architectural components driving the surprising alignment of untrained models.
arXiv Detail & Related papers (2024-06-21T12:54:03Z) - Explaining Text Similarity in Transformer Models [52.571158418102584]
Recent advances in explainable AI have made it possible to mitigate limitations by leveraging improved explanations for Transformers.
We use BiLRP, an extension developed for computing second-order explanations in bilinear similarity models, to investigate which feature interactions drive similarity in NLP models.
Our findings contribute to a deeper understanding of different semantic similarity tasks and models, highlighting how novel explainable AI methods enable in-depth analyses and corpus-level insights.
arXiv Detail & Related papers (2024-05-10T17:11:31Z) - Navigating Brain Language Representations: A Comparative Analysis of Neural Language Models and Psychologically Plausible Models [29.50162863143141]
We compare encoding performance of various neural language models and psychologically plausible models.
Surprisingly, our findings revealed that psychologically plausible models outperformed neural language models across diverse contexts.
arXiv Detail & Related papers (2024-04-30T08:48:07Z) - Diffexplainer: Towards Cross-modal Global Explanations with Diffusion Models [51.21351775178525]
DiffExplainer is a novel framework that, leveraging language-vision models, enables multimodal global explainability.
It employs diffusion models conditioned on optimized text prompts, synthesizing images that maximize class outputs.
The analysis of generated visual descriptions allows for automatic identification of biases and spurious features.
arXiv Detail & Related papers (2024-04-03T10:11:22Z) - Language Generation from Brain Recordings [68.97414452707103]
We propose a generative language BCI that utilizes the capacity of a large language model and a semantic brain decoder.
The proposed model can generate coherent language sequences aligned with the semantic content of visual or auditory language stimuli.
Our findings demonstrate the potential and feasibility of employing BCIs in direct language generation.
arXiv Detail & Related papers (2023-11-16T13:37:21Z) - Model-based analysis of brain activity reveals the hierarchy of language
in 305 subjects [82.81964713263483]
A popular approach to decompose the neural bases of language consists in correlating, across individuals, the brain responses to different stimuli.
Here, we show that a model-based approach can reach equivalent results within subjects exposed to natural stimuli.
arXiv Detail & Related papers (2021-10-12T15:30:21Z) - Implicit Representations of Meaning in Neural Language Models [31.71898809435222]
We identify contextual word representations that function as models of entities and situations as they evolve throughout a discourse.
Our results indicate that prediction in pretrained neural language models is supported, at least in part, by dynamic representations of meaning and implicit simulation of entity state.
arXiv Detail & Related papers (2021-06-01T19:23:20Z) - Does injecting linguistic structure into language models lead to better
alignment with brain recordings? [13.880819301385854]
We evaluate whether language models align better with brain recordings if their attention is biased by annotations from syntactic or semantic formalisms.
Our proposed approach enables the evaluation of more targeted hypotheses about the composition of meaning in the brain.
arXiv Detail & Related papers (2021-01-29T14:42:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.