論文の概要: GRACE: Graph-Regularized Attentive Convolutional Entanglement with Laplacian Smoothing for Robust DeepFake Video Detection
- arxiv url: http://arxiv.org/abs/2406.19941v2
- Date: Mon, 1 Jul 2024 01:06:59 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-02 12:30:11.863247
- Title: GRACE: Graph-Regularized Attentive Convolutional Entanglement with Laplacian Smoothing for Robust DeepFake Video Detection
- Title(参考訳): GRACE:ロバストディープフェイクビデオ検出のためのラプラシアンスムースティングによるグラフ規則化された注意的畳み込み
- Authors: Chih-Chung Hsu, Shao-Ning Chen, Mei-Hsuan Wu, Yi-Fang Wang, Chia-Ming Lee, Yi-Shiuan Chou,
- Abstract要約: 本稿では,グラフラプラシアンを用いたグラフ畳み込みネットワークに基づく,堅牢なDeepFakeビデオ検出手法を提案する。
提案手法は,雑音の多い顔シーケンス下でのDeepFakeビデオ検出における最先端性能を実現する。
- 参考スコア(独自算出の注目度): 7.591187423217017
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As DeepFake video manipulation techniques escalate, posing profound threats, the urgent need to develop efficient detection strategies is underscored. However, one particular issue lies with facial images being mis-detected, often originating from degraded videos or adversarial attacks, leading to unexpected temporal artifacts that can undermine the efficacy of DeepFake video detection techniques. This paper introduces a novel method for robust DeepFake video detection, harnessing the power of the proposed Graph-Regularized Attentive Convolutional Entanglement (GRACE) based on the graph convolutional network with graph Laplacian to address the aforementioned challenges. First, conventional Convolution Neural Networks are deployed to perform spatiotemporal features for the entire video. Then, the spatial and temporal features are mutually entangled by constructing a graph with sparse constraint, enforcing essential features of valid face images in the noisy face sequences remaining, thus augmenting stability and performance for DeepFake video detection. Furthermore, the Graph Laplacian prior is proposed in the graph convolutional network to remove the noise pattern in the feature space to further improve the performance. Comprehensive experiments are conducted to illustrate that our proposed method delivers state-of-the-art performance in DeepFake video detection under noisy face sequences. The source code is available at https://github.com/ming053l/GRACE.
- Abstract(参考訳): DeepFakeのビデオ操作技術がエスカレートし、深刻な脅威を生じさせるにつれ、効率的な検出戦略を開発する緊急の必要性が強調されている。
しかし、特定の問題は、顔画像が誤検出されていることであり、しばしば劣化したビデオや敵の攻撃が原因であり、予期せぬ時間的成果物がDeepFakeのビデオ検出技術の有効性を損なう可能性がある。
本稿では,グラフ畳み込みネットワークをベースとしたGRACE(Graph-Regularized Attentive Convolutional Entanglement)のパワーを生かしたDeepFakeビデオ検出手法を提案する。
まず、従来の畳み込みニューラルネットワークを使用して、ビデオ全体の時空間的機能を実行する。
そして、その空間的特徴と時間的特徴は、スパース制約のあるグラフを構築し、残されるノイズの多い顔列における有効な顔画像の本質的特徴を強制することにより相互に絡み合わされ、DeepFakeビデオ検出の安定性と性能が向上する。
さらに,グラフ畳み込みネットワークでは,特徴空間のノイズパターンを除去し,さらなる性能向上を図るため,グラフラプラシアン先行法が提案されている。
提案手法は, ノイズのある顔系列下でのDeepFakeビデオ検出において, 最先端の性能を実現することを実証するために, 総合実験を行った。
ソースコードはhttps://github.com/ming053l/GRACEで入手できる。
関連論文リスト
- Learning Spatiotemporal Inconsistency via Thumbnail Layout for Face Deepfake Detection [41.35861722481721]
社会とサイバーセキュリティに対するディープフェイクの脅威は、重大な公衆の不安を引き起こしている。
本稿では,Thumbnail Layout(TALL)という,エレガントでシンプルだが効果的な戦略を紹介する。
TALLはビデオクリップを予め定義されたレイアウトに変換し、空間的および時間的依存関係の保存を実現する。
論文 参考訳(メタデータ) (2024-03-15T12:48:44Z) - Deep Convolutional Pooling Transformer for Deepfake Detection [54.10864860009834]
本研究では,局所的・グローバル的に決定的な画像特徴を取り入れた深部畳み込み変換器を提案する。
具体的には,抽出した特徴を充実させ,有効性を高めるために,畳み込みプーリングと再アテンションを適用した。
提案手法は、内部実験と相互データセット実験の両方において、最先端のベースラインを一貫して上回る。
論文 参考訳(メタデータ) (2022-09-12T15:05:41Z) - Deepfake Video Detection with Spatiotemporal Dropout Transformer [32.577096083927884]
本稿では,ドロップアウトトランスによるディープフェイク映像の検出を容易にするための,単純かつ効果的なパッチレベルアプローチを提案する。
このアプローチでは、各入力ビデオがパッチの袋に再編成され、その後視覚変換器に送られ、堅牢な表現を実現する。
論文 参考訳(メタデータ) (2022-07-14T02:04:42Z) - Video Salient Object Detection via Contrastive Features and Attention
Modules [106.33219760012048]
本稿では,注目モジュールを持つネットワークを用いて,映像の有意な物体検出のためのコントラスト特徴を学習する。
コアテンションの定式化は、低レベル特徴と高レベル特徴を組み合わせるために用いられる。
提案手法は計算量が少なく,最先端の手法に対して良好に動作することを示す。
論文 参考訳(メタデータ) (2021-11-03T17:40:32Z) - Exposing Deepfake with Pixel-wise AR and PPG Correlation from Faint
Signals [3.0034765247774864]
ディープフェイクは、法的証拠と知的財産保護の信頼性に深刻な脅威をもたらす。
既存の画素レベルの検出方法は、偽ビデオの増大するリアリズムに抵抗できない。
フェースビデオに隠された暗信号を通してディープフェイクを露呈する手法を提案する。
論文 参考訳(メタデータ) (2021-10-29T06:05:52Z) - Beyond the Spectrum: Detecting Deepfakes via Re-Synthesis [69.09526348527203]
ディープフェイク(Deepfakes)として知られる非常に現実的なメディアは、現実の目から人間の目まで区別できない。
本研究では,テスト画像を再合成し,検出のための視覚的手がかりを抽出する,新しい偽検出手法を提案する。
種々の検出シナリオにおいて,提案手法の摂動に対する有効性の向上,GANの一般化,堅牢性を示す。
論文 参考訳(メタデータ) (2021-05-29T21:22:24Z) - Improving the Efficiency and Robustness of Deepfakes Detection through
Precise Geometric Features [13.033517345182728]
Deepfakesは、ターゲットの顔を元の顔にビデオで移植する悪質なテクニックの1つだ。
これまでのDeepfakesビデオ検出の取り組みは主に外観機能に焦点を当てており、高度な操作によってバイパスされるリスクがある。
高精度な幾何学的特徴を時間的モデル化してDeepfakesビデオを検出するための効率的かつ堅牢なフレームワークLRNetを提案します。
論文 参考訳(メタデータ) (2021-04-09T16:57:55Z) - Robust Unsupervised Video Anomaly Detection by Multi-Path Frame
Prediction [61.17654438176999]
本稿では,フレーム予測と適切な設計による新規で頑健な非教師付きビデオ異常検出手法を提案する。
提案手法は,CUHK Avenueデータセット上で88.3%のフレームレベルAUROCスコアを得る。
論文 参考訳(メタデータ) (2020-11-05T11:34:12Z) - Sharp Multiple Instance Learning for DeepFake Video Detection [54.12548421282696]
我々はDeepFakeビデオに、ビデオレベルのラベルのみを提供するが、フェイクビデオのすべての顔が操作されるわけではない部分的な顔攻撃という新しい問題を導入する。
インスタンス埋め込みからバッグ予測への直接マッピングを構築する鋭いMIL(S-MIL)を提案する。
FFPMSと広く使われているDFDCデータセットの実験により、S-MILは部分的に攻撃されたDeepFakeビデオ検出において他の手法よりも優れていることが確認された。
論文 参考訳(メタデータ) (2020-08-11T08:52:17Z) - Two-branch Recurrent Network for Isolating Deepfakes in Videos [17.59209853264258]
本稿では,2分岐ネットワーク構造に基づくディープフェイク検出手法を提案する。
1つのブランチは元の情報を伝達し、もう1つのブランチは顔の内容を抑制する。
当社の2つの新しいコンポーネントは、FaceForensics++、Celeb-DF、FacebookのDFDCプレビューベンチマークで有望な結果を示している。
論文 参考訳(メタデータ) (2020-08-08T01:38:56Z) - BBAND Index: A No-Reference Banding Artifact Predictor [55.42929350861115]
バンディングアーティファクト(英: Banding artifact)または偽コントゥーリング(英: false contouring)は、一般的なビデオ圧縮障害である。
本稿では,Blind BANding Detector (BBAND index) と呼ばれる,歪み特異的な非参照ビデオ品質モデルを提案する。
論文 参考訳(メタデータ) (2020-02-27T03:05:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。