BESTOW: Efficient and Streamable Speech Language Model with the Best of Two Worlds in GPT and T5
- URL: http://arxiv.org/abs/2406.19954v1
- Date: Fri, 28 Jun 2024 14:40:03 GMT
- Title: BESTOW: Efficient and Streamable Speech Language Model with the Best of Two Worlds in GPT and T5
- Authors: Zhehuai Chen, He Huang, Oleksii Hrinchuk, Krishna C. Puvvada, Nithin Rao Koluguri, Piotr Żelasko, Jagadeesh Balam, Boris Ginsburg,
- Abstract summary: We propose BESTOW architecture to bring the BESt features from TwO Worlds into a single model that is highly efficient and has strong multitask capabilities.
We reformulate streamable SpeechLLM as a read-write policy problem and unifies the offline and streaming research with BESTOW architecture.
- Score: 25.644228338604815
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Incorporating speech understanding capabilities into pretrained large-language models has become a vital research direction (SpeechLLM). The previous architectures can be categorized as: i) GPT-style, prepend speech prompts to the text prompts as a sequence of LLM inputs like a decoder-only model; ii) T5-style, introduce speech cross-attention to each layer of the pretrained LLMs. We propose BESTOW architecture to bring the BESt features from TwO Worlds into a single model that is highly efficient and has strong multitask capabilities. Moreover, there is no clear streaming solution for either style, especially considering the solution should generalize to speech multitask. We reformulate streamable SpeechLLM as a read-write policy problem and unifies the offline and streaming research with BESTOW architecture. Hence we demonstrate the first open-source SpeechLLM solution that enables Streaming and Multitask at scale (beyond ASR) at the same time. This streamable solution achieves very strong performance on a wide range of speech tasks (ASR, AST, SQA, unseen DynamicSuperb). It is end-to-end optimizable, with lower training/inference cost, and demonstrates LLM knowledge transferability to speech.
Related papers
- Get Large Language Models Ready to Speak: A Late-fusion Approach for Speech Generation [14.746190461312036]
Large language models (LLMs) have revolutionized natural language processing (NLP)
We introduce a text-to-speech (TTS) system powered by a fine-tuned Llama model, named TTS-Llama, that achieves state-of-the-art speech synthesis performance.
We further propose MoLE-Llama, a text-and-speech multimodal LLM developed through purely late-fusion parameter-efficient fine-tuning (PEFT) and a mixture-of-expert architecture.
arXiv Detail & Related papers (2024-10-27T04:28:57Z) - VoiceTextBlender: Augmenting Large Language Models with Speech Capabilities via Single-Stage Joint Speech-Text Supervised Fine-Tuning [64.56272011710735]
We propose a novel single-stage joint speech-text SFT approach on the low-rank adaptation (LoRA) of the large language models (LLMs) backbone.
Compared to previous SpeechLMs with 7B or 13B parameters, our 3B model demonstrates superior performance across various speech benchmarks.
arXiv Detail & Related papers (2024-10-23T00:36:06Z) - Developing Instruction-Following Speech Language Model Without Speech Instruction-Tuning Data [84.01401439030265]
Recent end-to-end speech language models (SLMs) have expanded upon the capabilities of large language models (LLMs)
We present a simple yet effective automatic process for creating speech-text pair data.
Our model demonstrates general capabilities for speech-related tasks without the need for speech instruction-tuning data.
arXiv Detail & Related papers (2024-09-30T07:01:21Z) - Large Language Model Can Transcribe Speech in Multi-Talker Scenarios with Versatile Instructions [68.98811048970963]
We present a pioneering effort to investigate the capability of large language models (LLMs) in transcribing speech in multi-talker environments.
Our approach utilizes WavLM and Whisper encoder to extract multi-faceted speech representations that are sensitive to speaker characteristics and semantic context.
Comprehensive experiments reveal the promising performance of our proposed system, MT-LLM, in cocktail party scenarios.
arXiv Detail & Related papers (2024-09-13T07:28:28Z) - SpeechPrompt: Prompting Speech Language Models for Speech Processing Tasks [94.10497337235083]
We are first to explore the potential of prompting speech LMs in the domain of speech processing.
We reformulate speech processing tasks into speech-to-unit generation tasks.
We show that the prompting method can achieve competitive performance compared to the strong fine-tuning method.
arXiv Detail & Related papers (2024-08-23T13:00:10Z) - Investigating Decoder-only Large Language Models for Speech-to-text Translation [39.17113782374464]
Large language models (LLMs) are known for their exceptional reasoning capabilities, generalizability, and fluency across diverse domains.
We propose a decoder-only architecture that enables the LLM to directly consume the encoded speech representation and generate the text translation.
Our model achieves state-of-the-art performance on CoVoST 2 and FLEURS among models trained without proprietary data.
arXiv Detail & Related papers (2024-07-03T14:42:49Z) - AudioChatLlama: Towards General-Purpose Speech Abilities for LLMs [27.122094554340194]
We extend the instruction-tuned Llama-2 model with end-to-end general-purpose speech processing and reasoning abilities.
The resulting end-to-end model, named AudioChatLlama, can utilize audio prompts as a replacement for text and sustain a conversation.
arXiv Detail & Related papers (2023-11-12T06:56:14Z) - SLM: Bridge the thin gap between speech and text foundation models [45.319071954143325]
Speech and Language Model (SLM) is a multitask, multilingual, and dual-modal model that takes advantage of pretrained foundational speech and language models.
We show that SLM is efficient to train, but also inherits strong capabilities already acquired in foundation models of different modalities.
arXiv Detail & Related papers (2023-09-30T02:27:45Z) - SpeechGen: Unlocking the Generative Power of Speech Language Models with
Prompts [108.04306136086807]
We present research that explores the application of prompt tuning to stimulate speech LMs for various generation tasks, within a unified framework called SpeechGen.
The proposed unified framework holds great promise for efficiency and effectiveness, particularly with the imminent arrival of advanced speech LMs.
arXiv Detail & Related papers (2023-06-03T22:35:27Z) - Bridging Speech and Textual Pre-trained Models with Unsupervised ASR [70.61449720963235]
This work proposes a simple yet efficient unsupervised paradigm that connects speech and textual pre-trained models.
We show that unsupervised automatic speech recognition (ASR) can improve the representations from speech self-supervised models.
Notably, on spoken question answering, we reach the state-of-the-art result over the challenging NMSQA benchmark.
arXiv Detail & Related papers (2022-11-06T04:50:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.