Simulating Financial Market via Large Language Model based Agents
- URL: http://arxiv.org/abs/2406.19966v1
- Date: Fri, 28 Jun 2024 14:54:12 GMT
- Title: Simulating Financial Market via Large Language Model based Agents
- Authors: Shen Gao, Yuntao Wen, Minghang Zhu, Jianing Wei, Yuhan Cheng, Qunzi Zhang, Shuo Shang,
- Abstract summary: Most economic theories assume that financial market participants are fully rational individuals and use mathematical models to simulate human behavior in financial markets.
We propose textbfAgent-based textbfSimulated textbfFinancial textbfMarket (ASFM), which first constructs a simulated stock market with a real order matching system.
- Score: 22.36549613587476
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Most economic theories typically assume that financial market participants are fully rational individuals and use mathematical models to simulate human behavior in financial markets. However, human behavior is often not entirely rational and is challenging to predict accurately with mathematical models. In this paper, we propose \textbf{A}gent-based \textbf{S}imulated \textbf{F}inancial \textbf{M}arket (ASFM), which first constructs a simulated stock market with a real order matching system. Then, we propose a large language model based agent as the stock trader, which contains the profile, observation, and tool-learning based action module. The trading agent can comprehensively understand current market dynamics and financial policy information, and make decisions that align with their trading strategy. In the experiments, we first verify that the reactions of our ASFM are consistent with the real stock market in two controllable scenarios. In addition, we also conduct experiments in two popular economics research directions, and we find that conclusions drawn in our \model align with the preliminary findings in economics research. Based on these observations, we believe our proposed ASFM provides a new paradigm for economic research.
Related papers
- MarS: a Financial Market Simulation Engine Powered by Generative Foundation Model [37.40553007693943]
In financial markets, generative models can simulate market effects of various behaviors, enabling interaction with market scenes and players, and training strategies without financial risk.
We propose Large Market Model (LMM), an order-level generative foundation model, for financial market simulation.
Our financial Market Simulation engine (MarS), powered by LMM, addresses the need for realistic, interactive and controllable order generation.
arXiv Detail & Related papers (2024-09-04T08:16:22Z) - When AI Meets Finance (StockAgent): Large Language Model-based Stock Trading in Simulated Real-world Environments [55.19252983108372]
We have developed a multi-agent AI system called StockAgent, driven by LLMs.
The StockAgent allows users to evaluate the impact of different external factors on investor trading.
It avoids the test set leakage issue present in existing trading simulation systems based on AI Agents.
arXiv Detail & Related papers (2024-07-15T06:49:30Z) - An Auction-based Marketplace for Model Trading in Federated Learning [54.79736037670377]
Federated learning (FL) is increasingly recognized for its efficacy in training models using locally distributed data.
We frame FL as a marketplace of models, where clients act as both buyers and sellers.
We propose an auction-based solution to ensure proper pricing based on performance gain.
arXiv Detail & Related papers (2024-02-02T07:25:53Z) - EconAgent: Large Language Model-Empowered Agents for Simulating Macroeconomic Activities [43.70290385026672]
We introduce EconAgent, a large language model-empowered agent with human-like characteristics for macroeconomic simulation.
We first construct a simulation environment that incorporates various market dynamics driven by agents' decisions.
Through the perception module, we create heterogeneous agents with distinct decision-making mechanisms.
arXiv Detail & Related papers (2023-10-16T14:19:40Z) - Can ChatGPT Forecast Stock Price Movements? Return Predictability and Large Language Models [51.3422222472898]
We document the capability of large language models (LLMs) like ChatGPT to predict stock price movements using news headlines.
We develop a theoretical model incorporating information capacity constraints, underreaction, limits-to-arbitrage, and LLMs.
arXiv Detail & Related papers (2023-04-15T19:22:37Z) - Neural Stochastic Agent-Based Limit Order Book Simulation: A Hybrid
Methodology [6.09170287691728]
Modern financial exchanges use an electronic limit order book (LOB) to store bid and ask orders for a specific financial asset.
We propose a novel hybrid LOB simulation paradigm characterised by: (1) representing the aggregation of market events' logic by a neural background trader that is pre-trained on historical LOB data through a neural point model; and (2) embedding the background trader in a multi-agent simulation with other trading agents.
We show that the stylised facts remain and we demonstrate order flow impact and financial herding behaviours that are in accordance with empirical observations of real markets.
arXiv Detail & Related papers (2023-02-28T20:53:39Z) - Bayesian Bilinear Neural Network for Predicting the Mid-price Dynamics
in Limit-Order Book Markets [84.90242084523565]
Traditional time-series econometric methods often appear incapable of capturing the true complexity of the multi-level interactions driving the price dynamics.
By adopting a state-of-the-art second-order optimization algorithm, we train a Bayesian bilinear neural network with temporal attention.
By addressing the use of predictive distributions to analyze errors and uncertainties associated with the estimated parameters and model forecasts, we thoroughly compare our Bayesian model with traditional ML alternatives.
arXiv Detail & Related papers (2022-03-07T18:59:54Z) - Finding General Equilibria in Many-Agent Economic Simulations Using Deep
Reinforcement Learning [72.23843557783533]
We show that deep reinforcement learning can discover stable solutions that are epsilon-Nash equilibria for a meta-game over agent types.
Our approach is more flexible and does not need unrealistic assumptions, e.g., market clearing.
We demonstrate our approach in real-business-cycle models, a representative family of DGE models, with 100 worker-consumers, 10 firms, and a government who taxes and redistributes.
arXiv Detail & Related papers (2022-01-03T17:00:17Z) - Towards Realistic Market Simulations: a Generative Adversarial Networks
Approach [2.381990157809543]
We propose a synthetic market generator based on Conditional Generative Adversarial Networks (CGANs) trained on real aggregate-level historical data.
A CGAN-based "world" agent can generate meaningful orders in response to an experimental agent.
arXiv Detail & Related papers (2021-10-25T22:01:07Z) - Trader-Company Method: A Metaheuristic for Interpretable Stock Price
Prediction [3.9189409002585562]
There are several challenges in financial markets hindering practical applications of machine learning-based models.
We propose the Trader-Company method, a novel evolutionary model that mimics the roles of a financial institute and traders.
Our method predicts future stock returns by aggregating suggestions from multiple weak learners called Traders.
arXiv Detail & Related papers (2020-12-18T13:19:27Z) - Gaussian process imputation of multiple financial series [71.08576457371433]
Multiple time series such as financial indicators, stock prices and exchange rates are strongly coupled due to their dependence on the latent state of the market.
We focus on learning the relationships among financial time series by modelling them through a multi-output Gaussian process.
arXiv Detail & Related papers (2020-02-11T19:18:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.