MarS: a Financial Market Simulation Engine Powered by Generative Foundation Model
- URL: http://arxiv.org/abs/2409.07486v1
- Date: Wed, 4 Sep 2024 08:16:22 GMT
- Title: MarS: a Financial Market Simulation Engine Powered by Generative Foundation Model
- Authors: Junjie Li, Yang Liu, Weiqing Liu, Shikai Fang, Lewen Wang, Chang Xu, Jiang Bian,
- Abstract summary: In financial markets, generative models can simulate market effects of various behaviors, enabling interaction with market scenes and players, and training strategies without financial risk.
We propose Large Market Model (LMM), an order-level generative foundation model, for financial market simulation.
Our financial Market Simulation engine (MarS), powered by LMM, addresses the need for realistic, interactive and controllable order generation.
- Score: 37.40553007693943
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Generative models aim to simulate realistic effects of various actions across different contexts, from text generation to visual effects. Despite efforts to build real-world simulators, leveraging generative models for virtual worlds, like financial markets, remains underexplored. In financial markets, generative models can simulate market effects of various behaviors, enabling interaction with market scenes and players, and training strategies without financial risk. This simulation relies on the finest structured data in financial market like orders thus building the finest realistic simulation. We propose Large Market Model (LMM), an order-level generative foundation model, for financial market simulation, akin to language modeling in the digital world. Our financial Market Simulation engine (MarS), powered by LMM, addresses the need for realistic, interactive and controllable order generation. Key objectives of this paper include evaluating LMM's scaling law in financial markets, assessing MarS's realism, balancing controlled generation with market impact, and demonstrating MarS's potential applications. We showcase MarS as a forecast tool, detection system, analysis platform, and agent training environment. Our contributions include pioneering a generative model for financial markets, designing MarS to meet domain-specific needs, and demonstrating MarS-based applications' industry potential.
Related papers
- Neuro-Symbolic Traders: Assessing the Wisdom of AI Crowds in Markets [0.0]
We develop a form of virtual traders that use deep generative models to make buy/sell decisions.
Under our framework, neuro-symbolic traders are agents that use vision-language models to discover a model of the fundamental value of an asset.
We find that this leads to price suppression compared to the historical data, highlighting a future risk to market stability.
arXiv Detail & Related papers (2024-10-18T16:37:52Z) - GenSim: A General Social Simulation Platform with Large Language Model based Agents [111.00666003559324]
We propose a novel large language model (LLMs)-based simulation platform called textitGenSim.
Our platform supports one hundred thousand agents to better simulate large-scale populations in real-world contexts.
To our knowledge, GenSim represents an initial step toward a general, large-scale, and correctable social simulation platform.
arXiv Detail & Related papers (2024-10-06T05:02:23Z) - Simulating Financial Market via Large Language Model based Agents [22.36549613587476]
Most economic theories assume that financial market participants are fully rational individuals and use mathematical models to simulate human behavior in financial markets.
We propose textbfAgent-based textbfSimulated textbfFinancial textbfMarket (ASFM), which first constructs a simulated stock market with a real order matching system.
arXiv Detail & Related papers (2024-06-28T14:54:12Z) - An Auction-based Marketplace for Model Trading in Federated Learning [54.79736037670377]
Federated learning (FL) is increasingly recognized for its efficacy in training models using locally distributed data.
We frame FL as a marketplace of models, where clients act as both buyers and sellers.
We propose an auction-based solution to ensure proper pricing based on performance gain.
arXiv Detail & Related papers (2024-02-02T07:25:53Z) - EconAgent: Large Language Model-Empowered Agents for Simulating Macroeconomic Activities [43.70290385026672]
We introduce EconAgent, a large language model-empowered agent with human-like characteristics for macroeconomic simulation.
We first construct a simulation environment that incorporates various market dynamics driven by agents' decisions.
Through the perception module, we create heterogeneous agents with distinct decision-making mechanisms.
arXiv Detail & Related papers (2023-10-16T14:19:40Z) - Can ChatGPT Forecast Stock Price Movements? Return Predictability and Large Language Models [51.3422222472898]
We document the capability of large language models (LLMs) like ChatGPT to predict stock price movements using news headlines.
We develop a theoretical model incorporating information capacity constraints, underreaction, limits-to-arbitrage, and LLMs.
arXiv Detail & Related papers (2023-04-15T19:22:37Z) - Neural Stochastic Agent-Based Limit Order Book Simulation: A Hybrid
Methodology [6.09170287691728]
Modern financial exchanges use an electronic limit order book (LOB) to store bid and ask orders for a specific financial asset.
We propose a novel hybrid LOB simulation paradigm characterised by: (1) representing the aggregation of market events' logic by a neural background trader that is pre-trained on historical LOB data through a neural point model; and (2) embedding the background trader in a multi-agent simulation with other trading agents.
We show that the stylised facts remain and we demonstrate order flow impact and financial herding behaviours that are in accordance with empirical observations of real markets.
arXiv Detail & Related papers (2023-02-28T20:53:39Z) - Finding General Equilibria in Many-Agent Economic Simulations Using Deep
Reinforcement Learning [72.23843557783533]
We show that deep reinforcement learning can discover stable solutions that are epsilon-Nash equilibria for a meta-game over agent types.
Our approach is more flexible and does not need unrealistic assumptions, e.g., market clearing.
We demonstrate our approach in real-business-cycle models, a representative family of DGE models, with 100 worker-consumers, 10 firms, and a government who taxes and redistributes.
arXiv Detail & Related papers (2022-01-03T17:00:17Z) - FinRL-Meta: A Universe of Near-Real Market Environments for Data-Driven
Deep Reinforcement Learning in Quantitative Finance [58.77314662664463]
FinRL-Meta builds a universe of market environments for data-driven financial reinforcement learning.
First, FinRL-Meta separates financial data processing from the design pipeline of DRL-based strategy.
Second, FinRL-Meta provides hundreds of market environments for various trading tasks.
arXiv Detail & Related papers (2021-12-13T16:03:37Z) - Towards Realistic Market Simulations: a Generative Adversarial Networks
Approach [2.381990157809543]
We propose a synthetic market generator based on Conditional Generative Adversarial Networks (CGANs) trained on real aggregate-level historical data.
A CGAN-based "world" agent can generate meaningful orders in response to an experimental agent.
arXiv Detail & Related papers (2021-10-25T22:01:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.