Comparative Analysis of LSTM Neural Networks and Traditional Machine Learning Models for Predicting Diabetes Patient Readmission
- URL: http://arxiv.org/abs/2406.19980v1
- Date: Fri, 28 Jun 2024 15:06:22 GMT
- Title: Comparative Analysis of LSTM Neural Networks and Traditional Machine Learning Models for Predicting Diabetes Patient Readmission
- Authors: Abolfazl Zarghani,
- Abstract summary: This study uses the Diabetes 130-US Hospitals dataset for analysis and prediction of readmission patients by various machine learning models.
LightGBM turned out to be the best traditional model, while XGBoost was the runner-up.
This study demonstrates that model selection, validation, and interpretability are key steps in predictive healthcare modeling.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Diabetes mellitus is a chronic metabolic disorder that has emerged as one of the major health problems worldwide due to its high prevalence and serious complications, which are pricey to manage. Effective management requires good glycemic control and regular follow-up in the clinic; however, non-adherence to scheduled follow-ups is very common. This study uses the Diabetes 130-US Hospitals dataset for analysis and prediction of readmission patients by various traditional machine learning models, such as XGBoost, LightGBM, CatBoost, Decision Tree, and Random Forest, and also uses an in-house LSTM neural network for comparison. The quality of the data was assured by preprocessing it, and the performance evaluation for all these models was based on accuracy, precision, recall, and F1-score. LightGBM turned out to be the best traditional model, while XGBoost was the runner-up. The LSTM model suffered from overfitting despite high training accuracy. A major strength of LSTM is capturing temporal dependencies among the patient data. Further, SHAP values were used, which improved model interpretability, whereby key factors among them number of lab procedures and discharge disposition were identified as critical in the prediction of readmissions. This study demonstrates that model selection, validation, and interpretability are key steps in predictive healthcare modeling. This will help health providers design interventions for improved follow-up adherence and better management of diabetes.
Related papers
- From Glucose Patterns to Health Outcomes: A Generalizable Foundation Model for Continuous Glucose Monitor Data Analysis [50.80532910808962]
We present GluFormer, a generative foundation model on biomedical temporal data based on a transformer architecture.
GluFormer generalizes to 15 different external datasets, including 4936 individuals across 5 different geographical regions.
It can also predict onset of future health outcomes even 4 years in advance.
arXiv Detail & Related papers (2024-08-20T13:19:06Z) - Time Series Modeling for Heart Rate Prediction: From ARIMA to Transformers [4.744436991413165]
This study investigates advanced deep learning models, including LSTM, for predicting heart rate time series from the MIT-BIH Database.
Results demonstrate that deep learning models, particularly PatchTST, significantly outperform traditional models across multiple metrics.
arXiv Detail & Related papers (2024-06-18T01:55:37Z) - GARNN: An Interpretable Graph Attentive Recurrent Neural Network for
Predicting Blood Glucose Levels via Multivariate Time Series [12.618792803757714]
We propose interpretable graph attentive neural networks (GARNNs) to model multi-modal data.
GARNNs achieve the best prediction accuracy and provide high-quality temporal interpretability.
These findings underline the potential of GARNN as a robust tool for improving diabetes care.
arXiv Detail & Related papers (2024-02-26T01:18:53Z) - The Safety Challenges of Deep Learning in Real-World Type 1 Diabetes
Management [4.107887387754702]
Blood glucose simulation allows the effectiveness of type 1 diabetes (T1D) management strategies to be evaluated without patient harm.
Deep learning algorithms provide a promising avenue for extending simulator capabilities.
This work explores the implications of using deep learning algorithms trained on real-world data to model glucose dynamics.
arXiv Detail & Related papers (2023-10-23T09:25:50Z) - Machine Learning based prediction of Glucose Levels in Type 1 Diabetes
Patients with the use of Continuous Glucose Monitoring Data [0.0]
Continuous Glucose Monitoring (CGM) devices offer detailed, non-intrusive and real time insights into a patient's blood glucose concentrations.
Leveraging advanced Machine Learning (ML) Models as methods of prediction of future glucose levels, gives rise to substantial quality of life improvements.
arXiv Detail & Related papers (2023-02-24T19:10:40Z) - Clinical Deterioration Prediction in Brazilian Hospitals Based on
Artificial Neural Networks and Tree Decision Models [56.93322937189087]
An extremely boosted neural network (XBNet) is used to predict clinical deterioration (CD)
The XGBoost model obtained the best results in predicting CD among Brazilian hospitals' data.
arXiv Detail & Related papers (2022-12-17T23:29:14Z) - SANSformers: Self-Supervised Forecasting in Electronic Health Records
with Attention-Free Models [48.07469930813923]
This work aims to forecast the demand for healthcare services, by predicting the number of patient visits to healthcare facilities.
We introduce SANSformer, an attention-free sequential model designed with specific inductive biases to cater for the unique characteristics of EHR data.
Our results illuminate the promising potential of tailored attention-free models and self-supervised pretraining in refining healthcare utilization predictions across various patient demographics.
arXiv Detail & Related papers (2021-08-31T08:23:56Z) - A multi-stage machine learning model on diagnosis of esophageal
manometry [50.591267188664666]
The framework includes deep-learning models at the swallow-level stage and feature-based machine learning models at the study-level stage.
This is the first artificial-intelligence-style model to automatically predict CC diagnosis of HRM study from raw multi-swallow data.
arXiv Detail & Related papers (2021-06-25T20:09:23Z) - Interpreting Deep Glucose Predictive Models for Diabetic People Using
RETAIN [4.692400531340393]
We study the RETAIN architecture for the forecasting of future glucose values for diabetic people.
Thanks to its two-level attention mechanism, the RETAIN model is interpretable while remaining as efficient as standard neural networks.
arXiv Detail & Related papers (2020-09-08T13:20:15Z) - Hemogram Data as a Tool for Decision-making in COVID-19 Management:
Applications to Resource Scarcity Scenarios [62.997667081978825]
COVID-19 pandemics has challenged emergency response systems worldwide, with widespread reports of essential services breakdown and collapse of health care structure.
This work describes a machine learning model derived from hemogram exam data performed in symptomatic patients.
Proposed models can predict COVID-19 qRT-PCR results in symptomatic individuals with high accuracy, sensitivity and specificity.
arXiv Detail & Related papers (2020-05-10T01:45:03Z) - Short Term Blood Glucose Prediction based on Continuous Glucose
Monitoring Data [53.01543207478818]
This study explores the use of Continuous Glucose Monitoring (CGM) data as input for digital decision support tools.
We investigate how Recurrent Neural Networks (RNNs) can be used for Short Term Blood Glucose (STBG) prediction.
arXiv Detail & Related papers (2020-02-06T16:39:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.