Time Series Modeling for Heart Rate Prediction: From ARIMA to Transformers
- URL: http://arxiv.org/abs/2406.12199v3
- Date: Tue, 12 Nov 2024 07:28:08 GMT
- Title: Time Series Modeling for Heart Rate Prediction: From ARIMA to Transformers
- Authors: Haowei Ni, Shuchen Meng, Xieming Geng, Panfeng Li, Zhuoying Li, Xupeng Chen, Xiaotong Wang, Shiyao Zhang,
- Abstract summary: This study investigates advanced deep learning models, including LSTM, for predicting heart rate time series from the MIT-BIH Database.
Results demonstrate that deep learning models, particularly PatchTST, significantly outperform traditional models across multiple metrics.
- Score: 4.744436991413165
- License:
- Abstract: Cardiovascular disease (CVD) is a leading cause of death globally, necessitating precise forecasting models for monitoring vital signs like heart rate, blood pressure, and ECG. Traditional models, such as ARIMA and Prophet, are limited by their need for manual parameter tuning and challenges in handling noisy, sparse, and highly variable medical data. This study investigates advanced deep learning models, including LSTM, and transformer-based architectures, for predicting heart rate time series from the MIT-BIH Database. Results demonstrate that deep learning models, particularly PatchTST, significantly outperform traditional models across multiple metrics, capturing complex patterns and dependencies more effectively. This research underscores the potential of deep learning to enhance patient monitoring and CVD management, suggesting substantial clinical benefits. Future work should extend these findings to larger, more diverse datasets and real-world clinical applications to further validate and optimize model performance.
Related papers
- Development and Comparative Analysis of Machine Learning Models for Hypoxemia Severity Triage in CBRNE Emergency Scenarios Using Physiological and Demographic Data from Medical-Grade Devices [0.0]
Gradient Boosting Models (GBMs) outperformed sequential models in terms of training speed, interpretability, and reliability.
A 5-minute prediction window was chosen for timely intervention, with minute-levels standardizing the data.
This study highlights ML's potential to improve triage and reduce alarm fatigue.
arXiv Detail & Related papers (2024-10-30T23:24:28Z) - Deep State-Space Generative Model For Correlated Time-to-Event Predictions [54.3637600983898]
We propose a deep latent state-space generative model to capture the interactions among different types of correlated clinical events.
Our method also uncovers meaningful insights about the latent correlations among mortality and different types of organ failures.
arXiv Detail & Related papers (2024-07-28T02:42:36Z) - Comparative Analysis of LSTM Neural Networks and Traditional Machine Learning Models for Predicting Diabetes Patient Readmission [0.0]
This study uses the Diabetes 130-US Hospitals dataset for analysis and prediction of readmission patients by various machine learning models.
LightGBM turned out to be the best traditional model, while XGBoost was the runner-up.
This study demonstrates that model selection, validation, and interpretability are key steps in predictive healthcare modeling.
arXiv Detail & Related papers (2024-06-28T15:06:22Z) - Recent Advances in Predictive Modeling with Electronic Health Records [71.19967863320647]
utilizing EHR data for predictive modeling presents several challenges due to its unique characteristics.
Deep learning has demonstrated its superiority in various applications, including healthcare.
arXiv Detail & Related papers (2024-02-02T00:31:01Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
This paper introduces a novel, end-to-end diffusion-based risk prediction model, named MedDiffusion.
It enhances risk prediction performance by creating synthetic patient data during training to enlarge sample space.
It discerns hidden relationships between patient visits using a step-wise attention mechanism, enabling the model to automatically retain the most vital information for generating high-quality data.
arXiv Detail & Related papers (2023-10-04T01:36:30Z) - Robustness and Generalization Performance of Deep Learning Models on
Cyber-Physical Systems: A Comparative Study [71.84852429039881]
Investigation focuses on the models' ability to handle a range of perturbations, such as sensor faults and noise.
We test the generalization and transfer learning capabilities of these models by exposing them to out-of-distribution (OOD) samples.
arXiv Detail & Related papers (2023-06-13T12:43:59Z) - COPER: Continuous Patient State Perceiver [13.735956129637945]
We propose a novel COntinuous patient state PERceiver model, called COPER, to cope with irregular time-series in EHRs.
neural ordinary differential equations (ODEs) help COPER to generate regular time-series to feed to Perceiver model.
To evaluate the performance of the proposed model, we use in-hospital mortality prediction task on MIMIC-III dataset.
arXiv Detail & Related papers (2022-08-05T14:32:57Z) - SurvLatent ODE : A Neural ODE based time-to-event model with competing
risks for longitudinal data improves cancer-associated Deep Vein Thrombosis
(DVT) prediction [68.8204255655161]
We propose a generative time-to-event model, SurvLatent ODE, which parameterizes a latent representation under irregularly sampled data.
Our model then utilizes the latent representation to flexibly estimate survival times for multiple competing events without specifying shapes of event-specific hazard function.
SurvLatent ODE outperforms the current clinical standard Khorana Risk scores for stratifying DVT risk groups.
arXiv Detail & Related papers (2022-04-20T17:28:08Z) - Improving the efficacy of Deep Learning models for Heart Beat detection
on heterogeneous datasets [0.0]
We investigate the issues related to applying a Deep Learning model on heterogeneous datasets.
We show that the performance of a model trained on data from healthy subjects decreases when applied to patients with cardiac conditions.
We then evaluate the use of Transfer Learning to adapt the model to the different datasets.
arXiv Detail & Related papers (2021-10-26T14:26:55Z) - A multi-stage machine learning model on diagnosis of esophageal
manometry [50.591267188664666]
The framework includes deep-learning models at the swallow-level stage and feature-based machine learning models at the study-level stage.
This is the first artificial-intelligence-style model to automatically predict CC diagnosis of HRM study from raw multi-swallow data.
arXiv Detail & Related papers (2021-06-25T20:09:23Z) - Building Deep Learning Models to Predict Mortality in ICU Patients [0.0]
We propose several deep learning models using the same features as the SAPS II score.
Several experiments have been conducted based on the well known clinical dataset Medical Information Mart for Intensive Care III.
arXiv Detail & Related papers (2020-12-11T16:27:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.