Understanding and Mitigating Language Confusion in LLMs
- URL: http://arxiv.org/abs/2406.20052v2
- Date: Thu, 17 Oct 2024 15:57:10 GMT
- Title: Understanding and Mitigating Language Confusion in LLMs
- Authors: Kelly Marchisio, Wei-Yin Ko, Alexandre Bérard, Théo Dehaze, Sebastian Ruder,
- Abstract summary: We evaluate 15 typologically diverse languages with existing and newly-created English and multilingual prompts.
We find that Llama Instruct and Mistral models exhibit high degrees of language confusion.
We find that language confusion can be partially mitigated via few-shot prompting, multilingual SFT and preference tuning.
- Score: 76.96033035093204
- License:
- Abstract: We investigate a surprising limitation of LLMs: their inability to consistently generate text in a user's desired language. We create the Language Confusion Benchmark (LCB) to evaluate such failures, covering 15 typologically diverse languages with existing and newly-created English and multilingual prompts. We evaluate a range of LLMs on monolingual and cross-lingual generation reflecting practical use cases, finding that Llama Instruct and Mistral models exhibit high degrees of language confusion and even the strongest models fail to consistently respond in the correct language. We observe that base and English-centric instruct models are more prone to language confusion, which is aggravated by complex prompts and high sampling temperatures. We find that language confusion can be partially mitigated via few-shot prompting, multilingual SFT and preference tuning. We release our language confusion benchmark, which serves as a first layer of efficient, scalable multilingual evaluation at https://github.com/for-ai/language-confusion.
Related papers
- Large Language Models are Easily Confused: A Quantitative Metric, Security Implications and Typological Analysis [5.029635172046762]
Language Confusion is a phenomenon where Large Language Models (LLMs) generate text that is neither in the desired language, nor in a contextually appropriate language.
We introduce a novel metric, Language Confusion Entropy, designed to measure and quantify this confusion.
arXiv Detail & Related papers (2024-10-17T05:43:30Z) - Crosslingual Capabilities and Knowledge Barriers in Multilingual Large Language Models [62.91524967852552]
Large language models (LLMs) are typically multilingual due to pretraining on diverse multilingual corpora.
But can these models relate corresponding concepts across languages, effectively being crosslingual?
This study evaluates six state-of-the-art LLMs on inherently crosslingual tasks.
arXiv Detail & Related papers (2024-06-23T15:15:17Z) - Getting More from Less: Large Language Models are Good Spontaneous Multilingual Learners [67.85635044939836]
Large Language Models (LLMs) have shown impressive language capabilities.
In this work, we investigate the spontaneous multilingual alignment improvement of LLMs.
We find that LLMs instruction-tuned on the question translation data (i.e. without annotated answers) are able to encourage the alignment between English and a wide range of languages.
arXiv Detail & Related papers (2024-05-22T16:46:19Z) - Counterfactually Probing Language Identity in Multilingual Models [15.260518230218414]
We use AlterRep, a method of counterfactual probing, to explore the internal structure of multilingual models.
We find that, given a template in Language X, pushing towards Language Y systematically increases the probability of Language Y words.
arXiv Detail & Related papers (2023-10-29T01:21:36Z) - Democratizing LLMs for Low-Resource Languages by Leveraging their English Dominant Abilities with Linguistically-Diverse Prompts [75.33019401706188]
Large language models (LLMs) are known to effectively perform tasks by simply observing few exemplars.
We propose to assemble synthetic exemplars from a diverse set of high-resource languages to prompt the LLMs to translate from any language into English.
Our unsupervised prompting method performs on par with supervised few-shot learning in LLMs of different sizes for translations between English and 13 Indic and 21 African low-resource languages.
arXiv Detail & Related papers (2023-06-20T08:27:47Z) - Soft Language Clustering for Multilingual Model Pre-training [57.18058739931463]
We propose XLM-P, which contextually retrieves prompts as flexible guidance for encoding instances conditionally.
Our XLM-P enables (1) lightweight modeling of language-invariant and language-specific knowledge across languages, and (2) easy integration with other multilingual pre-training methods.
arXiv Detail & Related papers (2023-06-13T08:08:08Z) - Interpretable Unified Language Checking [42.816372695828306]
We present an interpretable, unified, language checking (UniLC) method for both human and machine-generated language.
We find that LLMs can achieve high performance on a combination of fact-checking, stereotype detection, and hate speech detection tasks.
arXiv Detail & Related papers (2023-04-07T16:47:49Z) - Call Larisa Ivanovna: Code-Switching Fools Multilingual NLU Models [1.827510863075184]
Novel benchmarks for multilingual natural language understanding (NLU) include monolingual sentences in several languages, annotated with intents and slots.
Existing benchmarks lack of code-switched utterances, which are difficult to gather and label due to complexity in the grammatical structure.
Our work adopts recognized methods to generate plausible and naturally-sounding code-switched utterances and uses them to create a synthetic code-switched test set.
arXiv Detail & Related papers (2021-09-29T11:15:00Z) - X-FACTR: Multilingual Factual Knowledge Retrieval from Pretrained
Language Models [103.75890012041366]
Language models (LMs) have proven surprisingly successful at capturing factual knowledge.
However, studies on LMs' factual representation ability have almost invariably been performed on English.
We create a benchmark of cloze-style probes for 23 typologically diverse languages.
arXiv Detail & Related papers (2020-10-13T05:29:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.