Call Larisa Ivanovna: Code-Switching Fools Multilingual NLU Models
- URL: http://arxiv.org/abs/2109.14350v1
- Date: Wed, 29 Sep 2021 11:15:00 GMT
- Title: Call Larisa Ivanovna: Code-Switching Fools Multilingual NLU Models
- Authors: Alexey Birshert and Ekaterina Artemova
- Abstract summary: Novel benchmarks for multilingual natural language understanding (NLU) include monolingual sentences in several languages, annotated with intents and slots.
Existing benchmarks lack of code-switched utterances, which are difficult to gather and label due to complexity in the grammatical structure.
Our work adopts recognized methods to generate plausible and naturally-sounding code-switched utterances and uses them to create a synthetic code-switched test set.
- Score: 1.827510863075184
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Practical needs of developing task-oriented dialogue assistants require the
ability to understand many languages. Novel benchmarks for multilingual natural
language understanding (NLU) include monolingual sentences in several
languages, annotated with intents and slots. In such setup models for
cross-lingual transfer show remarkable performance in joint intent recognition
and slot filling. However, existing benchmarks lack of code-switched
utterances, which are difficult to gather and label due to complexity in the
grammatical structure. The evaluation of NLU models seems biased and limited,
since code-switching is being left out of scope.
Our work adopts recognized methods to generate plausible and
naturally-sounding code-switched utterances and uses them to create a synthetic
code-switched test set. Based on experiments, we report that the
state-of-the-art NLU models are unable to handle code-switching. At worst, the
performance, evaluated by semantic accuracy, drops as low as 15\% from 80\%
across languages. Further we show, that pre-training on synthetic code-mixed
data helps to maintain performance on the proposed test set at a comparable
level with monolingual data. Finally, we analyze different language pairs and
show that the closer the languages are, the better the NLU model handles their
alternation. This is in line with the common understanding of how multilingual
models conduct transferring between languages
Related papers
- Understanding and Mitigating Language Confusion in LLMs [76.96033035093204]
We evaluate 15 typologically diverse languages with existing and newly-created English and multilingual prompts.
We find that Llama Instruct and Mistral models exhibit high degrees of language confusion.
We find that language confusion can be partially mitigated via few-shot prompting, multilingual SFT and preference tuning.
arXiv Detail & Related papers (2024-06-28T17:03:51Z) - Simple yet Effective Code-Switching Language Identification with
Multitask Pre-Training and Transfer Learning [0.7242530499990028]
Code-switching is the linguistics phenomenon where in casual settings, multilingual speakers mix words from different languages in one utterance.
We propose two novel approaches toward improving language identification accuracy on an English-Mandarin child-directed speech dataset.
Our best model achieves a balanced accuracy of 0.781 on a real English-Mandarin code-switching child-directed speech corpus and outperforms the previous baseline by 55.3%.
arXiv Detail & Related papers (2023-05-31T11:43:16Z) - Multi-level Contrastive Learning for Cross-lingual Spoken Language
Understanding [90.87454350016121]
We develop novel code-switching schemes to generate hard negative examples for contrastive learning at all levels.
We develop a label-aware joint model to leverage label semantics for cross-lingual knowledge transfer.
arXiv Detail & Related papers (2022-05-07T13:44:28Z) - Are Multilingual Models Effective in Code-Switching? [57.78477547424949]
We study the effectiveness of multilingual language models to understand their capability and adaptability to the mixed-language setting.
Our findings suggest that pre-trained multilingual models do not necessarily guarantee high-quality representations on code-switching.
arXiv Detail & Related papers (2021-03-24T16:20:02Z) - Revisiting Language Encoding in Learning Multilingual Representations [70.01772581545103]
We propose a new approach called Cross-lingual Language Projection (XLP) to replace language embedding.
XLP projects the word embeddings into language-specific semantic space, and then the projected embeddings will be fed into the Transformer model.
Experiments show that XLP can freely and significantly boost the model performance on extensive multilingual benchmark datasets.
arXiv Detail & Related papers (2021-02-16T18:47:10Z) - X-FACTR: Multilingual Factual Knowledge Retrieval from Pretrained
Language Models [103.75890012041366]
Language models (LMs) have proven surprisingly successful at capturing factual knowledge.
However, studies on LMs' factual representation ability have almost invariably been performed on English.
We create a benchmark of cloze-style probes for 23 typologically diverse languages.
arXiv Detail & Related papers (2020-10-13T05:29:56Z) - FILTER: An Enhanced Fusion Method for Cross-lingual Language
Understanding [85.29270319872597]
We propose an enhanced fusion method that takes cross-lingual data as input for XLM finetuning.
During inference, the model makes predictions based on the text input in the target language and its translation in the source language.
To tackle this issue, we propose an additional KL-divergence self-teaching loss for model training, based on auto-generated soft pseudo-labels for translated text in the target language.
arXiv Detail & Related papers (2020-09-10T22:42:15Z) - GLUECoS : An Evaluation Benchmark for Code-Switched NLP [17.066725832825423]
We present an evaluation benchmark, GLUECoS, for code-switched languages.
We present results on several NLP tasks in English-Hindi and English-Spanish.
We fine-tune multilingual models on artificially generated code-switched data.
arXiv Detail & Related papers (2020-04-26T13:28:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.