Efficient Large Multi-modal Models via Visual Context Compression
- URL: http://arxiv.org/abs/2406.20092v2
- Date: Sun, 17 Nov 2024 17:05:03 GMT
- Title: Efficient Large Multi-modal Models via Visual Context Compression
- Authors: Jieneng Chen, Luoxin Ye, Ju He, Zhao-Yang Wang, Daniel Khashabi, Alan Yuille,
- Abstract summary: We present the study on the analysis of redundancy concerning visual tokens and efficient training within large language models.
Our initial experiments show that eliminating up to 70% of visual tokens at the testing stage by simply average pooling only leads to a minimal 3% reduction in visual question answering accuracy.
We introduce Visual Context on the GQA benchmark, which reduces the number of visual tokens to enhance training and inference efficiency without sacrificing performance.
- Score: 23.966237939194514
- License:
- Abstract: While significant advancements have been made in compressed representations for text embeddings in large language models (LLMs), the compression of visual tokens in multi-modal LLMs (MLLMs) has remained a largely overlooked area. In this work, we present the study on the analysis of redundancy concerning visual tokens and efficient training within these models. Our initial experiments show that eliminating up to 70% of visual tokens at the testing stage by simply average pooling only leads to a minimal 3% reduction in visual question answering accuracy on the GQA benchmark, indicating significant redundancy in visual context. Addressing this, we introduce Visual Context Compressor, which reduces the number of visual tokens to enhance training and inference efficiency without sacrificing performance. To minimize information loss caused by the compression on visual tokens while maintaining training efficiency, we develop LLaVolta as a light and staged training scheme that incorporates stage-wise visual context compression to progressively compress the visual tokens from heavily to lightly compression during training, yielding no loss of information when testing. Extensive experiments demonstrate that our approach enhances the performance of MLLMs in both image-language and video-language understanding, while also significantly cutting training costs and improving inference efficiency.
Related papers
- Looking Beyond Text: Reducing Language bias in Large Vision-Language Models via Multimodal Dual-Attention and Soft-Image Guidance [67.26434607115392]
Large vision-language models (LVLMs) have achieved impressive results in various vision-language tasks.
LVLMs suffer from hallucinations caused by language bias, leading to diminished focus on images and ineffective visual comprehension.
We propose LACING to address the language bias of LVLMs with muLtimodal duAl-attention meChanIsm (MDA) aNd soft-image Guidance (IFG)
arXiv Detail & Related papers (2024-11-21T16:33:30Z) - FocusLLaVA: A Coarse-to-Fine Approach for Efficient and Effective Visual Token Compression [45.37530855889661]
High-resolution images lead to a quadratic increase in the number of visual tokens input into Multi-modal Large Language Models.
Current work develop visual token compression methods to achieve efficiency improvements, often at the expense of performance.
We build a coarse-to-fine visual token compression method, with a vision-guided sampler for compressing redundant regions with low information density, and a text-guided sampler for selecting visual tokens that are strongly correlated with the user instructions.
arXiv Detail & Related papers (2024-11-21T15:37:52Z) - Free Video-LLM: Prompt-guided Visual Perception for Efficient Training-free Video LLMs [56.040198387038025]
We present a novel prompt-guided visual perception framework (abbreviated as Free Video-LLM) for efficient inference of training-free video LLMs.
Our method effectively reduces the number of visual tokens while maintaining high performance across multiple video question-answering benchmarks.
arXiv Detail & Related papers (2024-10-14T12:35:12Z) - VideoLLM-MoD: Efficient Video-Language Streaming with Mixture-of-Depths Vision Computation [66.00245701441547]
We introduce a novel approach to reduce vision compute by leveraging redundant vision tokens "skipping layers" rather than decreasing the number of vision tokens.
Our method, VideoLLM-MoD, is inspired by mixture-of-depths LLMs and addresses the challenge of numerous vision tokens in long-term or streaming video.
arXiv Detail & Related papers (2024-08-29T17:21:58Z) - Incorporating Visual Experts to Resolve the Information Loss in
Multimodal Large Language Models [121.83413400686139]
This paper proposes to improve the visual perception ability of MLLMs through a mixture-of-experts knowledge enhancement mechanism.
We introduce a novel method that incorporates multi-task encoders and visual tools into the existing MLLMs training and inference pipeline.
arXiv Detail & Related papers (2024-01-06T02:02:34Z) - PerceptionGPT: Effectively Fusing Visual Perception into LLM [31.34127196055722]
The integration of visual inputs with large language models (LLMs) has led to remarkable advancements in multi-modal capabilities, giving rise to visual large language models (VLLMs)
We present a novel end-to-end framework named PerceptionGPT, which efficiently equips the VLLMs with visual perception abilities.
Our approach significantly alleviates the training difficulty suffered by previous approaches that formulate the visual outputs as discrete tokens.
arXiv Detail & Related papers (2023-11-11T16:59:20Z) - Heterogeneous Contrastive Learning: Encoding Spatial Information for
Compact Visual Representations [183.03278932562438]
This paper presents an effective approach that adds spatial information to the encoding stage to alleviate the learning inconsistency between the contrastive objective and strong data augmentation operations.
We show that our approach achieves higher efficiency in visual representations and thus delivers a key message to inspire the future research of self-supervised visual representation learning.
arXiv Detail & Related papers (2020-11-19T16:26:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.