FCoT-VL:Advancing Text-oriented Large Vision-Language Models with Efficient Visual Token Compression
- URL: http://arxiv.org/abs/2502.18512v1
- Date: Sat, 22 Feb 2025 16:05:33 GMT
- Title: FCoT-VL:Advancing Text-oriented Large Vision-Language Models with Efficient Visual Token Compression
- Authors: Jianjian Li, Junquan Fan, Feng Tang, Gang Huang, Shitao Zhu, Songlin Liu, Nian Xie, Wulong Liu, Yong Liao,
- Abstract summary: Current training-free visual token compression methods exhibit serious performance degradation in tasks involving high-resolution images.<n>We propose an efficient visual token compression framework for text-oriented Vision Large Language Models (VLLMs) in high-resolution scenarios.<n>Our approach significantly reduces computational overhead while outperforming the baselines across a range of text-oriented benchmarks.
- Score: 16.53645461974695
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rapid success of Vision Large Language Models (VLLMs) often depends on the high-resolution images with abundant visual tokens, which hinders training and deployment efficiency. Current training-free visual token compression methods exhibit serious performance degradation in tasks involving high-resolution, text-oriented image understanding and reasoning. In this paper, we propose an efficient visual token compression framework for text-oriented VLLMs in high-resolution scenarios. In particular, we employ a light-weight self-distillation pre-training stage to compress the visual tokens, requiring a limited numbers of image-text pairs and minimal learnable parameters. Afterwards, to mitigate potential performance degradation of token-compressed models, we construct a high-quality post-train stage. To validate the effectiveness of our method, we apply it to an advanced VLLMs, InternVL2. Experimental results show that our approach significantly reduces computational overhead while outperforming the baselines across a range of text-oriented benchmarks. We will release the models and code soon.
Related papers
- InternVL-X: Advancing and Accelerating InternVL Series with Efficient Visual Token Compression [1.8893427856534721]
We propose InternVL-X, which outperforms the InternVL model in both performance and efficiency.
By utilizing 20% or fewer visual tokens, InternVL-X achieves state-of-the-art performance on 7 public MLLM benchmarks, and improves the average metric by 2.34% across 12 tasks.
arXiv Detail & Related papers (2025-03-27T09:31:35Z) - Symmetrical Visual Contrastive Optimization: Aligning Vision-Language Models with Minimal Contrastive Images [7.823336661261962]
Large Vision-Language Models (VLMs) tend to neglect image content and over-rely on language-model priors.<n>We propose S-VCO (Symmetrical Visual Contrastive Optimization), a novel finetuning objective that steers the model toward capturing important visual details.
arXiv Detail & Related papers (2025-02-19T18:05:42Z) - AdaFV: Rethinking of Visual-Language alignment for VLM acceleration [7.9213473377478865]
Some approaches to reduce the visual tokens according to the self-attention of VLMs, which are biased, result in inaccurate responses.<n>We propose a self-adaptive cross-modality attention mixture mechanism that dynamically leverages the effectiveness of visual saliency and text-to-image similarity.<n>The proposed approach achieves state-of-the-art training-free VLM acceleration performance, especially when the reduction rate is sufficiently large.
arXiv Detail & Related papers (2025-01-16T13:34:33Z) - Efficient Multi-modal Large Language Models via Visual Token Grouping [55.482198808206284]
High-resolution images and videos pose a barrier to their broader adoption.<n> compressing vision tokens in MLLMs has emerged as a promising approach to reduce inference costs.<n>We introduce VisToG, a novel grouping mechanism that leverages the capabilities of pre-trained vision encoders to group similar image segments.
arXiv Detail & Related papers (2024-11-26T09:36:02Z) - FocusLLaVA: A Coarse-to-Fine Approach for Efficient and Effective Visual Token Compression [45.37530855889661]
High-resolution images lead to a quadratic increase in the number of visual tokens input into Multi-modal Large Language Models.
Current work develop visual token compression methods to achieve efficiency improvements, often at the expense of performance.
We build a coarse-to-fine visual token compression method, with a vision-guided sampler for compressing redundant regions with low information density, and a text-guided sampler for selecting visual tokens that are strongly correlated with the user instructions.
arXiv Detail & Related papers (2024-11-21T15:37:52Z) - Inference Optimal VLMs Need Fewer Visual Tokens and More Parameters [54.01228554126122]
Vision Language Models (VLMs) have demonstrated strong capabilities across various visual understanding and reasoning tasks.
To reduce inference costs, one can either downsize the Large Language Models (LLMs) or reduce the number of input tokens needed to represent the image.
We take the first steps toward designing token compression algorithms tailored for high-compression settings.
arXiv Detail & Related papers (2024-11-05T18:54:21Z) - Efficient Large Multi-modal Models via Visual Context Compression [23.966237939194514]
We present the study on the analysis of redundancy concerning visual tokens and efficient training within large language models.
Our initial experiments show that eliminating up to 70% of visual tokens at the testing stage by simply average pooling only leads to a minimal 3% reduction in visual question answering accuracy.
We introduce Visual Context on the GQA benchmark, which reduces the number of visual tokens to enhance training and inference efficiency without sacrificing performance.
arXiv Detail & Related papers (2024-06-28T17:57:14Z) - Memory-Space Visual Prompting for Efficient Vision-Language Fine-Tuning [59.13366859237086]
Current solutions for efficiently constructing large vision-language (VL) models follow a two-step paradigm.
We consider visual prompts as additional knowledge that facilitates language models in addressing tasks associated with visual information.
We introduce a novel approach, wherein visual prompts are memoryd with the weights of FFN for visual knowledge injection.
arXiv Detail & Related papers (2024-05-09T08:23:20Z) - BUS:Efficient and Effective Vision-language Pre-training with Bottom-Up
Patch Summarization [89.52943129132217]
We propose a Bottom-Up Patch Summarization approach named BUS to learn a concise summary of lengthy visual token sequences efficiently.
We incorporate a Text-Semantics-Aware Patch Selector (TSPS) into the ViT backbone to perform a coarse-grained visual token extraction.
This bottom-up collaboration enables our BUS to yield high training efficiency while maintaining or even improving effectiveness.
arXiv Detail & Related papers (2023-07-17T14:08:17Z) - Prompt-based Learning for Unpaired Image Captioning [86.44188293709307]
Unpaired Image Captioning (UIC) has been developed to learn image descriptions from unaligned vision-language sample pairs.
Recent successes of Vision-Language Pre-Trained Models (VL-PTMs) have triggered the development of prompt-based learning.
We present in this paper a novel scheme based on prompt to train the UIC model, making best use of the powerful generalization ability.
arXiv Detail & Related papers (2022-05-26T03:13:43Z) - mPLUG: Effective and Efficient Vision-Language Learning by Cross-modal
Skip-connections [104.14624185375897]
mPLUG is a new vision-language foundation model for both cross-modal understanding and generation.
It achieves state-of-the-art results on a wide range of vision-language downstream tasks, such as image captioning, image-text retrieval, visual grounding and visual question answering.
arXiv Detail & Related papers (2022-05-24T11:52:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.