Preble: Efficient Distributed Prompt Scheduling for LLM Serving
- URL: http://arxiv.org/abs/2407.00023v2
- Date: Thu, 03 Oct 2024 17:50:33 GMT
- Title: Preble: Efficient Distributed Prompt Scheduling for LLM Serving
- Authors: Vikranth Srivatsa, Zijian He, Reyna Abhyankar, Dongming Li, Yiying Zhang,
- Abstract summary: This paper proposes Preble, the first distributed LLM serving platform that targets and optimize for prompt sharing.
We designed a distributed scheduling system that co-optimizes KV state reuse and computation load-balancing with a new scheduling algorithm and a hierarchical scheduling mechanism.
Our evaluation of Preble with real workloads and request arrival patterns on two open-source LLMs shows that Preble outperforms the SOTA serving systems by 1.5X to 14.5X on average latency and 2X to 10X on p99 latency.
- Score: 8.706905652975554
- License:
- Abstract: Prompts to large language models (LLMs) have evolved beyond simple user questions. For LLMs to solve complex problems, today's practices are to include domain-specific instructions, illustration of tool usages, and/or long context such as textbook chapters in prompts. As such, many parts of prompts are repetitive across requests. Recent works propose to cache and reuse KV state of prompts. However, they are all confined to a single-GPU optimization, while production LLM serving systems are distributed by nature. This paper proposes Preble, the first distributed LLM serving platform that targets and optimizes for prompt sharing. We designed a distributed scheduling system that co-optimizes KV state reuse and computation load-balancing with a new scheduling algorithm and a hierarchical scheduling mechanism. Our evaluation of Preble with real workloads and request arrival patterns on two open-source LLMs shows that Preble outperforms the SOTA serving systems by 1.5X to 14.5X on average latency and 2X to 10X on p99 latency.
Related papers
- ALISE: Accelerating Large Language Model Serving with Speculative Scheduling [7.367068885621016]
Large Language Models (LLMs) represent a revolutionary advancement in the contemporary landscape of artificial general intelligence (AGI)
In this paper, we propose a new efficient LLM inference serving framework, named ALISE.
We show that ALISE improves the throughput of inference serving by up to 1.8x and 2.1x under the same latency constraint on the Alpaca and ShareGPT datasets, respectively.
arXiv Detail & Related papers (2024-10-31T00:58:11Z) - Is the GPU Half-Empty or Half-Full? Practical Scheduling Techniques for LLMs [3.7758841366694353]
We survey scheduling techniques from the literature and from practical serving systems.
We find that schedulers from the literature often achieve good performance but introduce significant complexity.
In contrast, schedulers in practical deployments often leave easy performance gains on the table but are easy to implement, deploy and configure.
arXiv Detail & Related papers (2024-10-23T13:05:46Z) - Don't Stop Me Now: Embedding Based Scheduling for LLMs [22.099820814682513]
Size-based scheduling algorithms like Shortest Remaining Process Time (SRPT) aim to reduce average request completion time.
We propose a prediction-based SRPT variant with limited preemption designed to account for memory overhead in LLM systems.
arXiv Detail & Related papers (2024-10-01T19:51:07Z) - Efficient LLM Scheduling by Learning to Rank [19.33941579312897]
We show that it is possible to predict the relative ranks of output lengths in a batch of requests, using learning to rank.
We develop a novel scheduler for LLM inference and serving that can approximate the shortest-job-first (SJF) schedule better than existing approaches.
arXiv Detail & Related papers (2024-08-28T13:35:54Z) - Optimizing LLM Queries in Relational Workloads [58.254894049950366]
We show how to optimize Large Language Models (LLMs) inference for analytical workloads that invoke LLMs within relational queries.
We implement these optimizations in Apache Spark, with vLLM as the model serving backend.
We achieve up to 4.4x improvement in end-to-end latency on a benchmark of diverse LLM-based queries on real datasets.
arXiv Detail & Related papers (2024-03-09T07:01:44Z) - BiLLM: Pushing the Limit of Post-Training Quantization for LLMs [53.31402059062365]
BiLLM is a groundbreaking 1-bit post-training quantization scheme tailored for pretrained large language models.
It achieves for the first time high-accuracy inference (e.g. 8.41 perplexity on LLaMA2-70B) with only 1.08-bit weights across various LLMs families.
arXiv Detail & Related papers (2024-02-06T09:26:34Z) - SpotServe: Serving Generative Large Language Models on Preemptible
Instances [64.18638174004151]
SpotServe is the first distributed large language models serving system on preemptible instances.
We show that SpotServe can reduce the P99 tail latency by 2.4 - 9.1x compared with the best existing LLM serving systems.
We also show that SpotServe can leverage the price advantage of preemptive instances, saving 54% monetary cost compared with only using on-demand instances.
arXiv Detail & Related papers (2023-11-27T06:31:17Z) - LaGR-SEQ: Language-Guided Reinforcement Learning with Sample-Efficient
Querying [71.86163159193327]
Large language models (LLMs) have recently demonstrated their impressive ability to provide context-aware responses via text.
This ability could potentially be used to predict plausible solutions in sequential decision making tasks pertaining to pattern completion.
We introduce LaGR, which uses this predictive ability of LLMs to propose solutions to tasks that have been partially completed by a primary reinforcement learning (RL) agent.
arXiv Detail & Related papers (2023-08-21T02:07:35Z) - Fast Distributed Inference Serving for Large Language Models [12.703624317418237]
We present FastServe, a distributed inference serving system for large language models (LLMs)
FastServe exploits the autoregressive pattern of LLM inference to enable preemption at the granularity of each output token.
We build a system prototype of FastServe and experimental results show that compared to the state-of-the-art solution vLLM, FastServe improves the throughput by up to 31.4x and 17.9x under the same average and tail latency requirements, respectively.
arXiv Detail & Related papers (2023-05-10T06:17:50Z) - $k$NN Prompting: Beyond-Context Learning with Calibration-Free Nearest
Neighbor Inference [75.08572535009276]
In-Context Learning (ICL) formulates target tasks as prompt completion conditioned on in-context demonstrations.
$k$NN Prompting first queries LLM with training data for distributed representations, then predicts test instances by simply referring to nearest neighbors.
It significantly outperforms state-of-the-art calibration-based methods under comparable few-shot scenario.
arXiv Detail & Related papers (2023-03-24T06:16:29Z) - NumS: Scalable Array Programming for the Cloud [82.827921577004]
We present NumS, an array programming library which optimize NumPy-like expressions on task-based distributed systems.
This is achieved through a novel scheduler called Load Simulated Hierarchical Scheduling (LSHS)
We show that LSHS enhances performance on Ray by decreasing network load by a factor of 2x, requiring 4x less memory, and reducing execution time by 10x on the logistic regression problem.
arXiv Detail & Related papers (2022-06-28T20:13:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.