ALISE: Accelerating Large Language Model Serving with Speculative Scheduling
- URL: http://arxiv.org/abs/2410.23537v1
- Date: Thu, 31 Oct 2024 00:58:11 GMT
- Title: ALISE: Accelerating Large Language Model Serving with Speculative Scheduling
- Authors: Youpeng Zhao, Jun Wang,
- Abstract summary: Large Language Models (LLMs) represent a revolutionary advancement in the contemporary landscape of artificial general intelligence (AGI)
In this paper, we propose a new efficient LLM inference serving framework, named ALISE.
We show that ALISE improves the throughput of inference serving by up to 1.8x and 2.1x under the same latency constraint on the Alpaca and ShareGPT datasets, respectively.
- Score: 7.367068885621016
- License:
- Abstract: Large Language Models (LLMs) represent a revolutionary advancement in the contemporary landscape of artificial general intelligence (AGI). As exemplified by ChatGPT, LLM-based applications necessitate minimal response latency and maximal throughput for inference serving. However, due to the unpredictability of LLM execution, the first-come-first-serve (FCFS) scheduling policy employed by current LLM serving systems suffers from head-of-line (HoL) blocking issues and long job response times. In this paper, we propose a new efficient LLM inference serving framework, named ALISE. The key design paradigm of ALISE is to leverage a novel speculative scheduler by estimating the execution time for each job and exploiting such prior knowledge to assign appropriate job priority orders, thus minimizing potential queuing delays for heterogeneous workloads. Furthermore, to mitigate the memory overhead of the intermediate key-value (KV) cache, we employ a priority-based adaptive memory management protocol and quantization-based compression techniques. Evaluations demonstrate that in comparison to the state-of-the-art solution vLLM, ALISE improves the throughput of inference serving by up to 1.8x and 2.1x under the same latency constraint on the Alpaca and ShareGPT datasets, respectively.
Related papers
- Fast Inference for Augmented Large Language Models [14.195265302357148]
Augmented Large Language Models (LLMs) enhance the capabilities of standalone LLMs by integrating external data sources through API calls.
Traditional size-based scheduling algorithms, such as Shortest Job First (SJF), become less effective at minimizing completion times.
We propose LAMPS, a novel LLM inference framework for augmented LLMs.
arXiv Detail & Related papers (2024-10-23T19:53:30Z) - Don't Stop Me Now: Embedding Based Scheduling for LLMs [22.099820814682513]
Size-based scheduling algorithms like Shortest Remaining Process Time (SRPT) aim to reduce average request completion time.
We propose a prediction-based SRPT variant with limited preemption designed to account for memory overhead in LLM systems.
arXiv Detail & Related papers (2024-10-01T19:51:07Z) - Efficient LLM Scheduling by Learning to Rank [19.33941579312897]
We show that it is possible to predict the relative ranks of output lengths in a batch of requests, using learning to rank.
We develop a novel scheduler for LLM inference and serving that can approximate the shortest-job-first (SJF) schedule better than existing approaches.
arXiv Detail & Related papers (2024-08-28T13:35:54Z) - SHERL: Synthesizing High Accuracy and Efficient Memory for Resource-Limited Transfer Learning [63.93193829913252]
We propose an innovative METL strategy called SHERL for resource-limited scenarios.
In the early route, intermediate outputs are consolidated via an anti-redundancy operation.
In the late route, utilizing minimal late pre-trained layers could alleviate the peak demand on memory overhead.
arXiv Detail & Related papers (2024-07-10T10:22:35Z) - Efficient Interactive LLM Serving with Proxy Model-based Sequence Length Prediction [8.705908108054878]
Large models (LLMs) have been driving a new wave of AI applications across numerous domains.
We present a speculative shortest-job-first (SSJF) scheduler that uses a light proxy model to predict LLM output sequence lengths.
arXiv Detail & Related papers (2024-04-12T14:46:15Z) - Characterization of Large Language Model Development in the Datacenter [55.9909258342639]
Large Language Models (LLMs) have presented impressive performance across several transformative tasks.
However, it is non-trivial to efficiently utilize large-scale cluster resources to develop LLMs.
We present an in-depth characterization study of a six-month LLM development workload trace collected from our GPU datacenter Acme.
arXiv Detail & Related papers (2024-03-12T13:31:14Z) - How Can LLM Guide RL? A Value-Based Approach [68.55316627400683]
Reinforcement learning (RL) has become the de facto standard practice for sequential decision-making problems by improving future acting policies with feedback.
Recent developments in large language models (LLMs) have showcased impressive capabilities in language understanding and generation, yet they fall short in exploration and self-improvement capabilities.
We develop an algorithm named LINVIT that incorporates LLM guidance as a regularization factor in value-based RL, leading to significant reductions in the amount of data needed for learning.
arXiv Detail & Related papers (2024-02-25T20:07:13Z) - Revisiting Zeroth-Order Optimization for Memory-Efficient LLM Fine-Tuning: A Benchmark [166.40879020706151]
This paper proposes a shift towards BP-free, zeroth-order (ZO) optimization as a solution for reducing memory costs during fine-tuning.
Unlike traditional ZO-SGD methods, our work expands the exploration to a wider array of ZO optimization techniques.
Our study unveils previously overlooked optimization principles, highlighting the importance of task alignment, the role of the forward gradient method, and the balance between algorithm complexity and fine-tuning performance.
arXiv Detail & Related papers (2024-02-18T14:08:48Z) - FederatedScope-LLM: A Comprehensive Package for Fine-tuning Large
Language Models in Federated Learning [70.38817963253034]
This paper first discusses these challenges of federated fine-tuning LLMs, and introduces our package FS-LLM as a main contribution.
We provide comprehensive federated parameter-efficient fine-tuning algorithm implementations and versatile programming interfaces for future extension in FL scenarios.
We conduct extensive experiments to validate the effectiveness of FS-LLM and benchmark advanced LLMs with state-of-the-art parameter-efficient fine-tuning algorithms in FL settings.
arXiv Detail & Related papers (2023-09-01T09:40:36Z) - Fast Distributed Inference Serving for Large Language Models [12.703624317418237]
We present FastServe, a distributed inference serving system for large language models (LLMs)
FastServe exploits the autoregressive pattern of LLM inference to enable preemption at the granularity of each output token.
We build a system prototype of FastServe and experimental results show that compared to the state-of-the-art solution vLLM, FastServe improves the throughput by up to 31.4x and 17.9x under the same average and tail latency requirements, respectively.
arXiv Detail & Related papers (2023-05-10T06:17:50Z) - Task Residual for Tuning Vision-Language Models [69.22958802711017]
We propose a new efficient tuning approach for vision-language models (VLMs) named Task Residual Tuning (TaskRes)
TaskRes explicitly decouples the prior knowledge of the pre-trained models and new knowledge regarding a target task.
The proposed TaskRes is simple yet effective, which significantly outperforms previous methods on 11 benchmark datasets.
arXiv Detail & Related papers (2022-11-18T15:09:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.