Provably Secure Non-interactive Key Exchange Protocol for Group-Oriented Applications in Scenarios with Low-Quality Networks
- URL: http://arxiv.org/abs/2407.00073v2
- Date: Sat, 13 Jul 2024 07:08:11 GMT
- Title: Provably Secure Non-interactive Key Exchange Protocol for Group-Oriented Applications in Scenarios with Low-Quality Networks
- Authors: Rui Zhang, Lei Zhang,
- Abstract summary: Non-interactive key exchange (NIKE) enables two or multiple parties to derive a (group) session key without the need for interaction.
We propose a secure and efficient NIKE protocol for secure communications in dynamic groups.
- Score: 11.986730976775437
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Non-interactive key exchange (NIKE) enables two or multiple parties (just knowing the public system parameters and each other's public key) to derive a (group) session key without the need for interaction. Recently, NIKE in multi-party settings has been attached importance. However, we note that most existing multi-party NIKE protocols, underlying costly cryptographic techniques (i.e., multilinear maps and indistinguishability obfuscation), lead to high computational costs once employed in practice. Therefore, it is a challenging task to achieve multi-party NIKE protocols by using more practical cryptographic primitives. In this paper, we propose a secure and efficient NIKE protocol for secure communications in dynamic groups, whose construction only bases on bilinear maps. This protocol allows multiple parties to negotiate asymmetric group keys (a public group encryption key and each party's decryption key) without any interaction among one another. Additionally, the protocol supports updating of group keys in an efficient and non-interactive way once any party outside a group or any group member joins or leaves the group. Further, any party called a sender (even outside a group) intending to connect with some or all of group members called receivers in a group, just needs to generate a ciphertext with constant size under the public group encryption key, and only the group member who is the real receiver can decrypt the ciphertext to obtain the session key. We prove our protocol captures the correctness and indistinguishability of session key under k-Bilinear Diffie-Hellman exponent (k-BDHE) assumption. Efficiency evaluation shows the efficiency of our protocol.
Related papers
- Distributed Symmetric Key Establishment: a Scalable Quantum-Safe Key Distribution Protocol [4.1010893028706255]
Pre-shared keys (PSK) have been widely used in network security.
Existing PSK solutions are not scalable.
We propose a new protocol called Distributed Symmetric Key Establishment (DSKE)
arXiv Detail & Related papers (2024-07-30T16:55:17Z) - Coding-Based Hybrid Post-Quantum Cryptosystem for Non-Uniform Information [53.85237314348328]
We introduce for non-uniform messages a novel hybrid universal network coding cryptosystem (NU-HUNCC)
We show that NU-HUNCC is information-theoretic individually secured against an eavesdropper with access to any subset of the links.
arXiv Detail & Related papers (2024-02-13T12:12:39Z) - Dynamic Quantum Group Key Agreement via Tree Key Graphs [36.47236890715043]
We propose two dynamic Quantum Group Key Agreement protocols for a join or leave request in group communications.
The number of qubits required per join or leave only increases logarithmically with the group size.
arXiv Detail & Related papers (2023-12-07T07:45:59Z) - Establishing shared secret keys on quantum line networks: protocol and
security [0.0]
We show the security of multi-user key establishment on a single line of quantum communication.
We consider a quantum communication architecture where qubit generation and measurement happen at the two ends of the line.
arXiv Detail & Related papers (2023-04-04T15:35:23Z) - Revocable Cryptography from Learning with Errors [61.470151825577034]
We build on the no-cloning principle of quantum mechanics and design cryptographic schemes with key-revocation capabilities.
We consider schemes where secret keys are represented as quantum states with the guarantee that, once the secret key is successfully revoked from a user, they no longer have the ability to perform the same functionality as before.
arXiv Detail & Related papers (2023-02-28T18:58:11Z) - Conference key agreement in a quantum network [67.410870290301]
Quantum conference key agreement (QCKA) allows multiple users to establish a secure key from a shared multi-partite entangled state.
In a quantum network, this protocol can be efficiently implemented using a single copy of a N-qubit Greenberger-Horne-Zeilinger (GHZ) state to distil a secure N-user conference key bit.
arXiv Detail & Related papers (2022-07-04T18:00:07Z) - Anonymous conference key agreement in linear quantum networks [0.29998889086656577]
Conference key agreement (CKA) is an extension of key distribution to multiple parties.
CKA can also be performed in a way that protects the identities of the participating parties, therefore providing anonymity.
We propose an anonymous CKA protocol for three parties that is implemented in a highly practical network setting.
arXiv Detail & Related papers (2022-05-18T18:38:52Z) - Beyond the Prototype: Divide-and-conquer Proxies for Few-shot
Segmentation [63.910211095033596]
Few-shot segmentation aims to segment unseen-class objects given only a handful of densely labeled samples.
We propose a simple yet versatile framework in the spirit of divide-and-conquer.
Our proposed approach, named divide-and-conquer proxies (DCP), allows for the development of appropriate and reliable information.
arXiv Detail & Related papers (2022-04-21T06:21:14Z) - A Group Key Establishment Scheme [1.4091801425319967]
Group authentication is a method of confirming that a set of users belong to a group.
Unlike the standard authentication schemes where one central authority authenticates users one by one, group authentication can handle the authentication process at once for all members of the group.
arXiv Detail & Related papers (2021-09-30T12:04:55Z) - Recovering AES Keys with a Deep Cold Boot Attack [91.22679787578438]
Cold boot attacks inspect the corrupted random access memory soon after the power has been shut down.
In this work, we combine a novel cryptographic variant of a deep error correcting code technique with a modified SAT solver scheme to apply the attack on AES keys.
Our results show that our methods outperform the state of the art attack methods by a very large margin.
arXiv Detail & Related papers (2021-06-09T07:57:01Z) - Experimental quantum conference key agreement [55.41644538483948]
Quantum networks will provide multi-node entanglement over long distances to enable secure communication on a global scale.
Here we demonstrate quantum conference key agreement, a quantum communication protocol that exploits multi-partite entanglement.
We distribute four-photon Greenberger-Horne-Zeilinger (GHZ) states generated by high-brightness, telecom photon-pair sources across up to 50 km of fibre.
arXiv Detail & Related papers (2020-02-04T19:00:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.