Establishing shared secret keys on quantum line networks: protocol and
security
- URL: http://arxiv.org/abs/2304.01881v1
- Date: Tue, 4 Apr 2023 15:35:23 GMT
- Title: Establishing shared secret keys on quantum line networks: protocol and
security
- Authors: Mina Doosti, Lucas Hanouz, Anne Marin, Elham Kashefi, and Marc Kaplan
- Abstract summary: We show the security of multi-user key establishment on a single line of quantum communication.
We consider a quantum communication architecture where qubit generation and measurement happen at the two ends of the line.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We show the security of multi-user key establishment on a single line of
quantum communication. More precisely, we consider a quantum communication
architecture where the qubit generation and measurement happen at the two ends
of the line, whilst intermediate parties are limited to single-qubit unitary
transforms. This network topology has been previously introduced to implement
quantum-assisted secret-sharing protocols for classical data, as well as the
key establishment, and secure computing. This architecture has numerous
advantages. The intermediate nodes are only using simplified hardware, which
makes them easier to implement. Moreover, key establishment between arbitrary
pairs of parties in the network does not require key routing through
intermediate nodes. This is in contrast with quantum key distribution (QKD)
networks for which non-adjacent nodes need intermediate ones to route keys,
thereby revealing these keys to intermediate parties and consuming previously
established ones to secure the routing process. Our main result is to show the
security of key establishment on quantum line networks. We show the security
using the framework of abstract cryptography. This immediately makes the
security composable, showing that the keys can be used for encryption or other
tasks.
Related papers
- Towards efficient and secure quantum-classical communication networks [47.27205216718476]
There are two primary approaches to achieving quantum-resistant security: quantum key distribution (QKD) and post-quantum cryptography (PQC)
We introduce the pros and cons of these protocols and explore how they can be combined to achieve a higher level of security and/or improved performance in key distribution.
We hope our discussion inspires further research into the design of hybrid cryptographic protocols for quantum-classical communication networks.
arXiv Detail & Related papers (2024-11-01T23:36:19Z) - Guarantees on the structure of experimental quantum networks [105.13377158844727]
Quantum networks connect and supply a large number of nodes with multi-party quantum resources for secure communication, networked quantum computing and distributed sensing.
As these networks grow in size, certification tools will be required to answer questions regarding their properties.
We demonstrate a general method to guarantee that certain correlations cannot be generated in a given quantum network.
arXiv Detail & Related papers (2024-03-04T19:00:00Z) - Hierarchical certification of nonclassical network correlations [50.32788626697182]
We derive linear and nonlinear Bell-like inequalities for networks, whose violation certifies the absence of a minimum number of classical sources in them.
We insert this assumption, which leads to results more amenable to certification in experiments.
arXiv Detail & Related papers (2023-06-27T18:00:01Z) - Practical quantum secure direct communication with squeezed states [55.41644538483948]
We report the first table-top experimental demonstration of a CV-QSDC system and assess its security.
This realization paves the way into future threat-less quantum metropolitan networks, compatible with coexisting advanced wavelength division multiplexing (WDM) systems.
arXiv Detail & Related papers (2023-06-25T19:23:42Z) - Quantum key distribution with post-processing driven by physical
unclonable functions [2.233624388203003]
Quantum key-distribution protocols allow two honest distant parties to establish a common truly random secret key in the presence of powerful adversaries.
This pre-shared secret key is used mainly for authentication purposes in the post-processing of classical data.
We discuss the conditions under which physical unclonable function can be integrated in currently available quantum key-distribution systems.
arXiv Detail & Related papers (2023-02-15T12:33:01Z) - Anonymous conference key agreement in linear quantum networks [0.29998889086656577]
Conference key agreement (CKA) is an extension of key distribution to multiple parties.
CKA can also be performed in a way that protects the identities of the participating parties, therefore providing anonymity.
We propose an anonymous CKA protocol for three parties that is implemented in a highly practical network setting.
arXiv Detail & Related papers (2022-05-18T18:38:52Z) - Analysis of Multiple Overlapping Paths algorithms for Secure Key
Exchange in Large-Scale Quantum Networks [0.0]
Current implementations of quantum networks are unavoidably equipped with trusted nodes.
Some new authentication and key exchange schemes must be considered to fully benefit from the unconditional security of links.
One such approach uses Multiple Non-Overlapping Paths (MNOPs) for key exchange to mitigate the risk of an attack on a trusted node.
arXiv Detail & Related papers (2022-05-06T12:40:52Z) - An Evolutionary Pathway for the Quantum Internet Relying on Secure
Classical Repeaters [64.48099252278821]
We conceive quantum networks using secure classical repeaters combined with the quantum secure direct communication principle.
In these networks, the ciphertext gleaned from a quantum-resistant algorithm is transmitted using QSDC along the nodes.
We have presented the first experimental demonstration of a secure classical repeater based hybrid quantum network.
arXiv Detail & Related papers (2022-02-08T03:24:06Z) - Secure distribution of a certified random quantum key using an entangled
memory qubit [0.0]
We produce a certified random secret key on both endpoints of the quantum communication channel.
We certify the randomness of the key using the min-entropy of the atom-photon state.
arXiv Detail & Related papers (2021-11-29T13:31:30Z) - Scalable authentication and optimal flooding in a quantum network [2.604279577944016]
We consider two related protocols, their experimental demonstrations on an 8-user quantum network test-bed.
First, an authentication transfer protocol to manage a fundamental limitation of quantum communication.
Second, when end users quantify their trust in intermediary nodes, our flooding protocol can be used to improve both end-to-end communication speeds and increase security against malicious nodes.
arXiv Detail & Related papers (2021-01-28T19:00:07Z) - Experimental quantum conference key agreement [55.41644538483948]
Quantum networks will provide multi-node entanglement over long distances to enable secure communication on a global scale.
Here we demonstrate quantum conference key agreement, a quantum communication protocol that exploits multi-partite entanglement.
We distribute four-photon Greenberger-Horne-Zeilinger (GHZ) states generated by high-brightness, telecom photon-pair sources across up to 50 km of fibre.
arXiv Detail & Related papers (2020-02-04T19:00:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.